Ouyang, Cheng; Roberson-Vickery, William Quasi-sure non-self-intersection for rough differential equations driven by fractional Brownian motion. (English) Zbl 1492.60302 Electron. Commun. Probab. 27, Paper No. 15, 12 p. (2022). Summary: In this paper we study the self-intersection of paths solving elliptic stochastic differential equations driven by fractional Brownian motion. We show that such a path has no self-intersection – except for paths forming a set of zero \((r,q)\)-capacity in the sample space – provided the dimension \(d\) of the space and the Hurst parameter \(H\) satisfy the inequality \(d> rq+2/ H\). This inequality is sharp in the case of brownian motion and fractional brownian motion according to existing results. Various results exist for the critical case where \(d=rq+4\) for Brownian motion. Cited in 1 Document MSC: 60L20 Rough paths 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60H07 Stochastic calculus of variations and the Malliavin calculus Keywords:rough differential equations; stochastic differential equations; fractional Brownian motion; Malliavin calculus; capacity × Cite Format Result Cite Review PDF Full Text: DOI References: [1] F. Baudoin, E. Nualart, E. C. Ouyang,and S. Tindel, On probability laws of solutions to differential systems Driven by a fractional Brownian motion, Ann. Probab. 44(4): 2554-2590, 2016. · Zbl 1352.60081 [2] H. Boedihardjo, X. Geng and Z. Qian, Quasi-sure existence of Gaussian rough paths and large deviation principles for capacities, Osaka J. Math. 53(4): 941-970. 2016. · Zbl 1362.60038 [3] H. Boedihardjo, X. Geng, X. Liu, Z. Qian, A Quasi-sure Non-degeneracy Property for the Brownian Rough Path, Potential Analysis. volume 51, 2019. · Zbl 1465.60045 [4] K.T. Chen, Integration of paths – a faithful representation of paths by non-commutative formal power series. Trans. Am. Math. Soc., 89:395-407, 1958. · Zbl 0097.25803 [5] L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Relat. Fields 122 (1), 108-140, 2002. · Zbl 1047.60029 [6] A. Dvoretzky, P. Erdős, and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math. Szeged 12: 75-81, 1950. · Zbl 0036.09001 [7] A. Dvoretzky, P. Erdös, and S. Kakutani, Multiple points of paths of Brownian motion in the plane. Bull. Res. Council Israel 3, 364-371, 1954. [8] A. Dvoretzky, P. Erdös, S. Kakutani, and S. J. Taylor, Triple points of Brownian paths in 3-space. Proc. Cambridge Philos. Soc. 53, 856-862 (1957). · Zbl 0208.44103 [9] P. K. Friz and N. B. Victoir, Multidimensional stochastic processes as rough paths, Cambridge University Press, Cambridge, 2010. · Zbl 1193.60053 [10] M. Fukushima, Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan 36 (1): 161-176, 1984. · Zbl 0522.60081 [11] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Berlin/New York 2010. · Zbl 0838.31001 [12] M. Hinz and S. Kang, Capacities, Removable Sets and \[{L^p}\]-Uniqueness on Wiener Spaces, Potential Analysis 54:503-533, 2021. · Zbl 1460.31014 [13] Y. Inahama, Quasi-Sure Existence of Brownian Rough Paths and a Construction of Brownian Pants, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (4): 513-528, 2006. · Zbl 1116.60025 [14] Y. Inahama, Malliavin Differentiability of Solutions of Rough Differential Equations. Preprint. 1312.7621 · Zbl 1296.60142 [15] S. Kakutani, On Brownian Motions in n-Space, Proceedings of the Imperial Academy 20 (9): 648-652, 1944. · Zbl 0063.03106 [16] D. Khoshnevisan, Intersections of Brownian Motion. Expo. Math. 21: 97-114, 2003. · Zbl 1041.60063 [17] A.N. Kolmogorov, Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (Dokl.) Acad. Sci. URSS (NS) 26, 115-118, 1940. · JFM 66.0552.03 [18] P. Lévy, Les mouvements browniens plans, Amer. Journ. of Math., 62, 1940. · JFM 66.0619.02 [19] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948. · Zbl 0034.22603 [20] S. Lou and C. Ouyang, Fractal dimensions of rough differential equations driven by fractional Brownian motions. Stochastic Processes and their Applications. Volume 126, Issue 8, 2410-2429, 2016. · Zbl 1342.60090 [21] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 2012. · Zbl 0638.60065 [22] J. Li and Z. Qian, Fine properties of fractional Brownian motions on Wiener space, Journal of Mathematical Analysis and Applications. Volume 473, Issue 1, 1, Pages 1411-173, 2019. · Zbl 1478.60127 [23] T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2), 215-310, 1998. · Zbl 0923.34056 [24] T. Lyons and Z. Qian, System control and rough paths, Oxford University Press, New York, 2002. · Zbl 1029.93001 [25] T. Lyons, M. Caruana, and T. Lévy, Differential Equations Driven by Rough Paths, Springer, Berlin, 2007. · Zbl 1176.60002 [26] T. Lyons, The critical dimension at which quasi-every Brownian path is self-avoiding, Adv. in Appl. Probab. 18: 87-99, 1986. · Zbl 0609.60087 [27] P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997. · Zbl 0878.60001 [28] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4) (1968) 422-437. · Zbl 0179.47801 [29] P. Mörters and Y. Peres, Brownian Motion, Cambridge University Press, Cambridge, 2010. · Zbl 1243.60002 [30] D. Nualart, The Malliavin Calculus and Related Topics, Springer, 2006. · Zbl 1099.60003 [31] G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassensatz, Math. Ann. 84, 149-160 · JFM 48.0603.01 [32] H. Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math. 25: 665-696, 1988. · Zbl 0737.46038 [33] M. Takeda, (r, p)-Capacity on the Wiener space and properties of Brownian motion, Z. Wahrscheinlichkeitstheorie verw. Gebiete 68: 149-162, 1984. · Zbl 0573.60068 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.