×

Weighted multiparameter local Hardy spaces. (English) Zbl 1495.42009

Summary: We apply the discrete multiparameter local Calderón identity and Littlewood-Paley-Stein theory with weights to carry out the weighted multiparameter local Hardy spaces \(h_w^p\) of arbitrary \(k\) number of parameters \((k \geq 3)\). We will derive the \((h_w^p, h_w^p)\) and \((h_w^p, L_w^p)\) \((0 < p \leq 1)\) boundedness for multiparameter inhomogeneous singular integral operators with slightly weaker assumptions on the kernel.

MSC:

42B35 Function spaces arising in harmonic analysis
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] O. N. Capri and C. E. Gutiérrez, “Weighted inequalities for a vector-valued strong maximal function”, Rocky Mountain J. Math. 18:3 (1988), 565-570. · Zbl 0676.42018 · doi:10.1216/RMJ-1988-18-3-565
[2] S.-Y. A. Chang and R. Fefferman, “A continuous version of duality of \[H^1\] with BMO on the bidisc”, Ann. of Math. (2) 112:1 (1980), 179-201. · Zbl 0451.42014 · doi:10.2307/1971324
[3] S.-Y. A. Chang and R. Fefferman, “The Calderón-Zygmund decomposition on product domains”, Amer. J. Math. 104:3 (1982), 455-468. · Zbl 0513.42019 · doi:10.2307/2374150
[4] S.-Y. A. Chang and R. Fefferman, “Some recent developments in Fourier analysis and \[H^p\]-theory on product domains”, Bull. Amer. Math. Soc. (N.S.) 12:1 (1985), 1-43. · Zbl 0557.42007 · doi:10.1090/S0273-0979-1985-15291-7
[5] W. Ding and G. Lu, “Boundedness of inhomogeneous Journé’s type operators on multi-parameter local Hardy spaces”, Nonlinear Anal. 197 (2020), 111816, 31. · Zbl 1440.42052 · doi:10.1016/j.na.2020.111816
[6] W. Ding, G. Lu, and Y. Zhu, “Discrete Littlewood-Paley-Stein characterization of multi-parameter local Hardy spaces”, Forum Math. 31:6 (2019), 1467-1488. · Zbl 1440.42104 · doi:10.1515/forum-2019-0038
[7] W. Ding, G. Lu, and Y. Zhu, “Multi-parameter local Hardy spaces”, Nonlinear Anal. 184 (2019), 352-380. · Zbl 1418.42038 · doi:10.1016/j.na.2019.02.014
[8] R. Fefferman, “Singular integrals on product \[H^p\] spaces”, Rev. Mat. Iberoamericana 1:2 (1985), 25-31. · Zbl 0613.42019 · doi:10.4171/RMI/9
[9] R. Fefferman, “Calderón-Zygmund theory for product domains: \[H^p\] spaces”, Proc. Nat. Acad. Sci. U.S.A. 83:4 (1986), 840-843. · Zbl 0602.42023 · doi:10.1073/pnas.83.4.840
[10] R. Fefferman, “Harmonic analysis on product spaces”, Ann. of Math. (2) 126:1 (1987), 109-130. · Zbl 0644.42017 · doi:10.2307/1971346
[11] R. Fefferman and E. M. Stein, “Singular integrals on product spaces”, Adv. in Math. 45:2 (1982), 117-143. · Zbl 0517.42024 · doi:10.1016/S0001-8708(82)80001-7
[12] M. Frazier and B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal. 93:1 (1990), 34-170. · Zbl 0716.46031 · doi:10.1016/0022-1236(90)90137-A
[13] M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics 79, Amer. Math. Soc., Providence, RI, 1991. · Zbl 0757.42006 · doi:10.1090/cbms/079
[14] D. Goldberg, “A local version of real Hardy spaces”, Duke Math. J. 46:1 (1979), 27-42. · Zbl 0409.46060
[15] R. F. Gundy and E. M. Stein, “\[H^p\] theory for the poly-disc”, Proc. Nat. Acad. Sci. U.S.A. 76:3 (1979), 1026-1029. · Zbl 0405.32002 · doi:10.1073/pnas.76.3.1026
[16] Y. Han, M.-Y. Lee, C.-C. Lin, and Y.-C. Lin, “Calderón-Zygmund operators on product Hardy spaces”, J. Funct. Anal. 258:8 (2010), 2834-2861. · Zbl 1197.42006 · doi:10.1016/j.jfa.2009.10.022
[17] Y. Han, G. Lu, and Z. Ruan, “Boundedness criterion of Journé’s class of singular integrals on multiparameter Hardy spaces”, J. Funct. Anal. 264:5 (2013), 1238-1268. · Zbl 1268.42024 · doi:10.1016/j.jfa.2012.12.006
[18] J.-L. Journé, “Calderón-Zygmund operators on product spaces”, Rev. Mat. Iberoamericana 1:3 (1985), 55-91. · Zbl 0634.42015 · doi:10.4171/RMI/15
[19] J. Pipher, “Journé’s covering lemma and its extension to higher dimensions”, Duke Math. J. 53:3 (1986), 683-690. · Zbl 0645.42018 · doi:10.1215/S0012-7094-86-05337-8
[20] V. S. Rychkov, “Littlewood-Paley theory and function spaces with \[A^{\rm loc}_p\] weights”, Math. Nachr. 224 (2001), 145-180 · Zbl 0984.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.