×

Some conjectural supercongruences related to Bernoulli and Euler numbers. (English) Zbl 1497.11013

Summary: We prove some supercongruences involving the Apéry polynomials \[A_n (x) = \sum^n_{k = 0} \binom{n}{k}^2\binom{n+k}{k}^2 x^k \,\, (n\in\mathbb{N}=\{0, 1, \ldots,\}),\] the generalized Domb numbers \[D_n (A, B, C) = \sum^n_{k = 0} \binom{n}{k}^A\binom{2k}{k}^B\binom{2n-2k}{n-k}^C\,\, (n\in\mathbb{N})\,\,\text{and}\,\, Q_n=\sum^n_{k=0}\binom{n}{k}\binom{n-k}{k}\binom{n+k}{k}\,\,(n\in\mathbb{N}),\] which were conjectured by Z.-W. Sun. For example, we show that for any prime \(p > 3\) and positive integer \(r\) we have \[\frac{A_{p^{r}} (-1) - A_{p^{r - 1}} (-1)} {p^{3r}} \equiv \frac{29}{6}B_{p - 3} \;(\mathrm{mod}\;p)\,\,\text{and}\,\,\frac{Q_{p^{r}} - Q_{p^{r - 1}}} {p^{3r}} \equiv - \frac{1}{9}B_{p - 3} \; (\mathrm{mod}\;p),\] where \(B_0, B_1, B_2, \ldots\) are the Bernoulli numbers. The following supercongruences hold modulo \(p\):
\[\frac{D_{p^{r}} (A, 1, 1) - D_{p^{r - 1}} (A, 1, 1)} {p^{(A + 1)r}} \equiv \begin{cases} 8(\frac{-1}{p^{r}})E_{p-3}, & \text{if } A=1 \\ \frac{16}{3}B_{p-3}, & \text{if } A=2, \end{cases}\] where \((\frac{\cdot}{p})\) denotes the Legendre symbol and \(E_0, E_1, E_2, \ldots\) are the Euler numbers.

MSC:

11A07 Congruences; primitive roots; residue systems
11B65 Binomial coefficients; factorials; \(q\)-identities
11B68 Bernoulli and Euler numbers and polynomials

References:

[1] S. Ahlgren and K. Ono, “A Gaussian hypergeometric series evaluation and Apéry number congruences”, J. Reine Angew. Math. 518 (2000), 187-212. · Zbl 0940.33002 · doi:10.1515/crll.2000.004
[2] G. Almkvist, D. van Straten, and W. Zudilin, “Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations”, Proc. Edinb. Math. Soc. (2) 54:2 (2011), 273-295. · Zbl 1223.33007 · doi:10.1017/S0013091509000959
[3] R. Apéry, “Irrationalité de \[\zeta 2\] et \[\zeta 3\]”, Astérisque 61 (1979), 11-13. · Zbl 0401.10049
[4] A. O. L. Atkin and H. P. F. Swinnerton-Dyer, “Modular forms on noncongruence subgroups”, pp. 1-25 in Combinatorics: Proc. Sympos. Pure Math. (Calif., 1968), vol. 19, Amer. Math. Soc., Providence, R.I., 1971. · Zbl 0235.10015
[5] D. H. Bailey, J. M. Borwein, D. Broadhurst, and M. L. Glasser, “Elliptic integral evaluations of Bessel moments and applications”, J. Phys. A 41:20 (2008), art. id. 205203. · Zbl 1152.33003 · doi:10.1088/1751-8113/41/20/205203
[6] F. Beukers, “Some congruences for the Apéry numbers”, J. Number Theory 21:2 (1985), 141-155. · Zbl 0571.10008 · doi:10.1016/0022-314X(85)90047-2
[7] F. Beukers, “Another congruence for the Apéry numbers”, J. Number Theory 25:2 (1987), 201-210. · Zbl 0614.10011 · doi:10.1016/0022-314X(87)90025-4
[8] J. M. Borwein, D. Nuyens, A. Straub, and J. Wan, “Some arithmetic properties of short random walk integrals”, Ramanujan J. 26:1 (2011), 109-132. · Zbl 1233.60024 · doi:10.1007/s11139-011-9325-y
[9] D. Callan, “A combinatorial interpretation for an identity of Barrucand”, J. Integer Seq. 11:3 (2008), art. id. 08.3.4. · Zbl 1148.05006
[10] H. H. Chan, S. H. Chan, and Z. Liu, “Domb’s numbers and Ramanujan-Sato type series for \[1/\pi \]”, Adv. Math. 186:2 (2004), 396-410. · Zbl 1122.11087 · doi:10.1016/j.aim.2003.07.012
[11] H. H. Chan, S. Cooper, and F. Sica, “Congruences satisfied by Apéry-like numbers”, Int. J. Number Theory 6:1 (2010), 89-97. · Zbl 1303.11009 · doi:10.1142/S1793042110002879
[12] S. Chowla, J. Cowles, and M. Cowles, “Congruence properties of Apéry numbers”, J. Number Theory 12:2 (1980), 188-190. · Zbl 0428.10008 · doi:10.1016/0022-314X(80)90051-7
[13] M. J. Coster, “Supercongruences”, pp. 194-204 in \[p -adic analysis \](Trento, 1989), Lecture Notes in Math 1454, Springer, Berlin, 1990. · Zbl 0715.11071 · doi:10.1007/BFb0091139
[14] C. Domb, “On the theory of cooperative phenomena in crystals”, Adv. Phys. 9:34 (1960), 149-244. · doi:10.1080/00018736000101189
[15] B. Dwork, “\[p\]-adic cycles”, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27-115. · Zbl 0284.14008 · doi:10.1007/BF02684886
[16] I. Gessel, “Some congruences for Apéry numbers”, J. Number Theory 14:3 (1982), 362-368. · Zbl 0482.10003 · doi:10.1016/0022-314X(82)90071-3
[17] I. M. Gessel, “Some congruences for generalized Euler numbers”, Canad. J. Math. 35:4 (1983), 687-709. · Zbl 0493.10014 · doi:10.4153/CJM-1983-039-5
[18] J. W. L. Glaisher, “On the residues of the sums of products of the first \[p-1\] numbers, and their powers, to modulus \[p^2\] or \[p^3\]”, Quart. J. 31 (1900), 321-353. · JFM 31.0185.01
[19] A. Granville, “Arithmetic properties of binomial coefficients, I: binomial coefficients modulo prime powers”, pp. 253-276 in Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0903.11005
[20] C. Helou and G. Terjanian, “On Wolstenholme’s theorem and its converse”, J. Number Theory 128:3 (2008), 475-499. · Zbl 1236.11003 · doi:10.1016/j.jnt.2007.06.008
[21] H. Hu and Z.-W. Sun, “An extension of Lucas’ theorem”, Proc. Amer. Math. Soc. 129:12 (2001), 3471-3478. · Zbl 1077.11502 · doi:10.1090/S0002-9939-01-06234-7
[22] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics 84, Springer, New York, 1990. · Zbl 0712.11001 · doi:10.1007/978-1-4757-2103-4
[23] E. E. Kummer, “Über eine allgemeine Eigenschaft der rationalen Entwickelungscoefficienten einer bestimmten Gattung analytischer Functionen”, J. Reine Angew. Math. 41 (1851), 368-372. · ERAM 041.1136cj · doi:10.1515/crll.1851.41.368
[24] P. A. MacMahon, Combinatorial analysis, vol. 1, Cambridge Univ. Press, London, 1915. · JFM 45.1271.01
[25] S. Mattarei and R. Tauraso, “Congruences for central binomial sums and finite polylogarithms”, J. Number Theory 133:1 (2013), 131-157. · Zbl 1300.11020 · doi:10.1016/j.jnt.2012.05.036
[26] Y. Mimura, “Congruence properties of Apéry numbers”, J. Number Theory 16:1 (1983), 138-146. · Zbl 0504.10007 · doi:10.1016/0022-314X(83)90038-0
[27] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and \[q -series \], CBMS Regional Conference Series in Mathematics 102, American Mathematical Society, Providence, RI, 2004. · Zbl 1119.11026
[28] R. Osburn and B. Sahu, “A supercongruence for generalized Domb numbers”, Funct. Approx. Comment. Math. 48:1 (2013), 29-36. · Zbl 1337.11001 · doi:10.7169/facm/2013.48.1.3
[29] R. Osburn, B. Sahu, and A. Straub, “Supercongruences for sporadic sequences”, Proc. Edinb. Math. Soc. (2) 59:2 (2016), 503-518. · Zbl 1411.11005 · doi:10.1017/S0013091515000255
[30] H. Pan and Z.-W. Sun, “Supercongruences for central trinomial coefficients”, preprint, 2020.
[31] A. van der Poorten, “A proof that Euler missed …: Apéry’s proof of the irrationality of \[\zeta (3)\]”, Math. Intelligencer 1:4 (1979), 195-203. · Zbl 0409.10028 · doi:10.1007/BF03028234
[32] L. B. Richmond and J. Shallit, “Counting abelian squares”, Electron. J. Combin. 16:1 (2009), art. id. R72. · Zbl 1191.68479 · doi:10.37236/161
[33] N. J. A. Sloane, “Franel number \[a(n) = \sum_{k = 0 \dots n} \binom{n}{k}^3\]”, pp. A000172 in The on-line encyclopedia of integer sequences, 1991.
[34] A. Straub, “Multivariate Apéry numbers and supercongruences of rational functions”, Algebra Number Theory 8:8 (2014), 1985-2007. · Zbl 1306.11005 · doi:10.2140/ant.2014.8.1985
[35] Z.-H. Sun, “Congruences concerning Bernoulli numbers and Bernoulli polynomials”, Discrete Appl. Math. 105:1-3 (2000), 193-223. · Zbl 0990.11008 · doi:10.1016/S0166-218X(00)00184-0
[36] R. Tauraso and J. Zhao, “Congruences of alternating multiple harmonic sums”, J. Comb. Number Theory 2:2 (2010), 129-159. · Zbl 1245.11008
[37] J. Zhao, “Wolstenholme type theorem for multiple harmonic sums”, Int. J. Number Theory 4:1 (2008), 73-106. · Zbl 1218.11005 · doi:10.1142/S1793042108001146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.