×

Proofs of some conjectures of Sun on the relations between \(T(a, b, c, d; n)\) and \(N(a, b, c, d; n)\). (English) Zbl 1497.11091

Summary: Let \(N(a, b, c, d; n)\) be the number of representations of \(n\) as \(ax^2 + by^2 + cz^2 + dw^2\) and \(T(a, b, c, d; n)\) be the number of representations of \(n\) as \[a\frac{X(X + 1)} {2} + b \frac{Y(Y + 1)} {2} + c \frac{Z(Z + 1)} {2} + d\frac{W(W + 1)} {2},\] where \(a, b, c, d\) are positive integers, \(x, y, z, w\) are integers, and \(n, X, Y, Z, W\) are nonnegative integers. In this paper, by using theta function identities, we confirm Sun’s conjectures that \(T(a, b, c, d; n)\) is a linear combination of \(N(a, b, c, d; n)\) and \(N(a, b, c, d; 4m)\), with \(m = 8n + a + b + c + d\), for several values of \(a, b, c, d\).

MSC:

11D85 Representation problems
11E25 Sums of squares and representations by other particular quadratic forms

References:

[1] C. Adiga, S. Cooper, and J. H. Han, “A general relation between sums of squares and sums of triangular numbers”, Int. J. Number Theory 1:2 (2005), 175-182. · Zbl 1137.11309 · doi:10.1142/S1793042105000078
[2] S. Alaca and K. S. Williams, “The number of representations of a positive integer by certain octonary quadratic forms”, Funct. Approx. Comment. Math. 43:part 1 (2010), 45-54. · Zbl 1213.11087 · doi:10.7169/facm/1285679145
[3] P. Barrucand, S. Cooper, and M. Hirschhorn, “Relations between squares and triangles”, Discrete Math. 248:1-3 (2002), 245-247. · Zbl 0991.11014 · doi:10.1016/S0012-365X(01)00344-2
[4] N. D. Baruah, S. Cooper, and M. Hirschhorn, “Sums of squares and sums of triangular numbers induced by partitions of 8”, Int. J. Number Theory 4:4 (2008), 525-538. · Zbl 1156.11018 · doi:10.1142/S179304210800150X
[5] N. D. Baruah, M. Kaur, M. Kim, and B.-K. Oh, “Proofs of some conjectures of Z.-H. Sun on relations between sums of squares and sums of triangular numbers”, Indian J. Pure Appl. Math. 51:1 (2020), 11-38. · Zbl 1477.11064 · doi:10.1007/s13226-020-0382-z
[6] P. T. Bateman and M. I. Knopp, “Some new old-fashioned modular identities”, Ramanujan J. 2:2 (1998), 247-269. · Zbl 0909.11018
[7] B. C. Berndt, Ramanujan’s notebooks, part III, Springer, New York, 1991. · Zbl 0733.11001 · doi:10.1007/978-1-4612-0965-2
[8] M. D. Hirschhorn, The power of \[q\], Developments in Mathematics 49, Springer, Cham, 2017. · Zbl 1456.11001 · doi:10.1007/978-3-319-57762-3
[9] Z.-H. Sun, “Some relations between \[t(a,b,c,d;n)\] and \[N(a,b,c,d;n)\]”, Acta Arith. 175:3 (2016), 269-289. · Zbl 1402.11055 · doi:10.4064/aa8418-5-2016
[10] Z.-H. Sun, “The number of representations of \[n\] as a linear combination of triangular numbers”, Int. J. Number Theory 15:6 (2019), 1191-1218. · Zbl 1435.11074 · doi:10.1142/S1793042119500660
[11] Z.-H. Sun, “Ramanujan’s theta functions and sums of triangular numbers”, Int. J. Number Theory 15:5 (2019), 969-989. · Zbl 1459.11098 · doi:10.1142/S1793042119500520
[12] E. X. W. Xia and Z. Yan, “Proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers”, Int. J. Number Theory 15:1 (2019), 189-212. · Zbl 1459.11099 · doi:10.1142/S1793042119500088
[13] E. X. W. Xia and X. M. Yao, “Some modular relations for the Göllnitz-Gordon functions by an even-odd method”, J. Math. Anal. Appl. 387:1 (2012), 126-138. · Zbl 1294.11183 · doi:10.1016/j.jmaa.2011.08.059
[14] E. X. W. Xia and Z. X. Zhong, “Proofs of some conjectures of Sun on the relations between \[N(a, b, c, d; n)\] and \[t(a, b, c, d; n)\]”, J. Math. Anal. Appl. 463:1 (2018), 1-18. · Zbl 1406.11029 · doi:10.1016/j.jmaa.2018.02.043
[15] O. X. M. Yao, “The relations between \[N(a,b,c,d;n)\] and \[t(a,b,c,d;n)\] and \[(p,k)\]-parametrization of theta functions”, J. Math. Anal. Appl. 453:1 (2017), 125-143. · Zbl 1404.11034 · doi:10.1016/j.jmaa.2017.03.067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.