×

When is a reductive group scheme linear? (English) Zbl 1497.14087

Summary: We show that a reductive group scheme over a base scheme \(S\) admits a faithful linear representation if and only if its radical torus is isotrivial; that is, it splits after a finite étale cover.

MSC:

14L15 Group schemes
20G35 Linear algebraic groups over adèles and other rings and schemes

References:

[1] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. IHÉS 60 (1984), 5-184. · Zbl 0597.14041
[2] B. Calmès and J. Fasel, Groupes classiques, autour des schémas en groupes, vol II, Panor. Synthèses 46 (2015), 1-133. · Zbl 1360.20048
[3] M. Demazure and P. Gabriel, Groupes algébriques, Masson, Paris, 1970. · Zbl 0203.23401
[4] A. Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. stud. pure math., 3, pp. 46-66, North-Holland, Amsterdam, 1968. · Zbl 0193.21503
[5] A. Grothendieck and J.-A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren Math. Wiss., 166, Springer, Berlin, 1971. · Zbl 0203.23301
[6] A. Grothendieck (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique IV. Étude locale des schémas et des morphismes de schémas IV Publ. Math. IHÉS 32 (1967), 5-361. · Zbl 0153.22301
[7] M.-A. Knus and M. Ojanguren, Théorie de la Descente et Algèbres d’Azumaya, Lecture Notes in Math., 389, Springer, Berlin, 1974. · Zbl 0284.13002
[8] B. Margaux, Formal torsors under reductive group schemes, Rev. Un. Mat. Argentina 60 (2019), 217-224. · Zbl 1440.14221
[9] J. Oesterlé, Schémas en groupes de type multiplicatif, Autour des schémas en groupes. Vol. I, Panor. Synthèses, 42/43, pp. 63-91, Soc. Math. France, Paris, 2014. · Zbl 1329.14091
[10] Séminaire de Géométrie algébrique de l’I.H.É.S., 1963-1964, Schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153. Springer (1970).
[11] Stacks project, ⟨https://stacks.math.columbia.edu⟩.
[12] R. W. Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math. 65 (1987), 16-34. · Zbl 0624.14025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.