×

Operads and abelian structures up to homotopy. (Opérades et structures commutatives à homotopie près.) (French) Zbl 1497.18028

Summary: Nous donnons une introduction au domaine des opérades, des objets qui encodent les structures algébriques. Après les avoir définies, nous présentons plusieurs domaines d’application des opérades : espaces de lacets itérés, formalité, algèbres homotopiques, longs nœuds et groupe de Grothendieck-Teichmüller.

MSC:

18M60 Operads (general)
57T30 Bar and cobar constructions
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Arone G. and Turchin V., Graph-complexes computing the rational homotopy of high dimensio-nal analogues of spaces of long knots, Ann. Inst. Fourier, 65 (2015), 1-62. · Zbl 1329.57035
[2] Berger C. and Fresse B., Combinatorial ope-rad actions on cochains, Math. Proc. Cambridge Philos. Soc., 137 (2004), 135-174. · Zbl 1056.55006
[3] Boardman J. M. and Vogt R. M., Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347 (1973). Berlin Heidelberg, Springer. · Zbl 0285.55012
[4] Cohen F. R., The homology of C n+1 spaces, n ≥ 0, The homology of iterated loop spaces, Lecture Notes in Mathematics 533 (1976), 207-351. Berlin Heidelberg, Springer. · Zbl 0334.55009
[5] Drinfel’d V. G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Algebra i Analiz, 2 (1990), 149-181. · Zbl 0718.16034
[6] Fresse B. Théorie des opérades de Koszul et ho-mologie des algèbres de Poisson, Ann. Math. Blaise Pascal, 13 (2006), 237-312. · Zbl 1141.55006
[7] Fresse B., Modules over operads and func-tors, Lecture Notes in Mathematics 1967 (2009).
[8] Springer-Verlag, Berlin.
[9] Fresse B., Iterated bar complexes of E-infinity algebras and homology theories, Algebr. Geom. To-pol., 11 (2011), 747-838. · Zbl 1238.57034
[10] Fresse B., Homotopy of Ope-rads and Grothendieck-Teichmüller Groups, Preprint. http ://math.univ-lille1.fr/ fresse/OperadHomotopyBook/.
[11] Fresse B. and Willwacher T., The intrinsic formality of E n -operads, Preprint.
[12] Ginzburg V. and Kapranov M., Koszul dua-lity for operads, Duke Math. J., 76 (1994), 203-272. · Zbl 0855.18006
[13] Hochschild G. and Kostant B. and Rosen-berg A., Differential forms on regular affine al-gebras, Trans. Amer. Math. Soc., 102 (1962), 383-408. · Zbl 0102.27701
[14] Hoefel E., OCHA and the swiss-cheese operad, J. Homotopy Relat. Struct., 4 (2009), 123-151. · Zbl 1185.18010
[15] Hovey M., Model categories, Mathematical Sur-veys and Monographs 63 (1999), American Mathe-matical Society. · Zbl 0909.55001
[16] Idrissi N., Homologie et complexes de dé-formations d’opérades E n , Mémoire de master, Université Paris 7 (2014). http ://math.univ-lille1.fr/ idrissi/files/m2.pdf.
[17] Idrissi N., Swiss-Cheese operad and Drinfeld cen-ter, Preprint. · Zbl 1422.55021
[18] Kajiura H. and Stasheff J., Homotopy alge-bras inspired by classical open-closed string field theory, Comm. Math. Phys., 263 (2006), 553-581. · Zbl 1125.18012
[19] Kaufmann R. M., A proof of a cyclic version of Deligne’s conjecture via cacti, Math. Res. Lett., 15 (2008), 901-921. · Zbl 1161.55001
[20] Kontsevich M., Operads and motives in defor-mation quantization, Lett. Math. Phys., 48 (1999), 35-72. · Zbl 0945.18008
[21] Kontsevich M., Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157-216. · Zbl 1058.53065
[22] Kontsevich M. and Soibelman Y., Defor-mations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon). Dordrecht (2000). Math. Phys. Stud., Klu-wer Acad. Publ., 255-307. · Zbl 0972.18005
[23] Lazard M., Lois de groupes et analyseurs, Ann. Sci. Éc. Norm. Sup., 72 (1955), 299-400. · Zbl 0068.02702
[24] Loday J. L. and Vallette B., Algebraic ope-rads, Grundlehren der Mathematischen Wissen-schaften [Fundamental Principles of Mathematical Sciences] 346 (2012), Heidelberg, Springer. · Zbl 1260.18001
[25] Lambrechts P. and Volic I., Formality of the little N -disks operad, Mem. Amer. Math. Soc., 230 (2014), viii+116 pages. · Zbl 1308.55006
[26] Mac Lane S., Categorical algebra, Bull. Amer. Math. Soc., 71 (1965), 40-106. · Zbl 0161.01601
[27] Markl M., Homotopy algebras are homotopy al-gebras, Forum Math., 16 (2004), 129-160. · Zbl 1067.55011
[28] May J. P., The geometry of iterated loop spaces, Lectures Notes in Mathematics 271 (1972). · Zbl 0244.55009
[29] Springer-Verlag Berlin.
[30] McClure J. E. and Smith J. H., A solu-tion of Deligne’s Hochschild cohomology conjecture, Recent progress in homotopy theory (Baltimore, MD, 2000). Amer. Math. Soc. 293 (2002), 153-193.
[31] Salvatore P., The topological cyclic Deligne conjecture, Algebr. Geom. Topol., 9 (2009), 237-264. · Zbl 1159.18304
[32] Salvatore P. and Wahl N., Framed discs ope-rads and Batalin-Vilkovisky algebras, Q. J. Math., 54 (2003), 213-231. · Zbl 1072.55006
[33] Stasheff J. D., Homotopy associativity of H-spaces, Thesis, Princeton University (1961), 116 pages.
[34] Tamarkin D. E., Another proof of M. Kontsevich formality theorem, Penn. State University (1998).
[35] Tamarkin D. E., Formality of chain operad of little discs, Lett. Math. Phys., 66 (2003), 65-72. · Zbl 1048.18007
[36] Tradler T. and Zeinalian M., On the cyclic Deligne conjecture, J. Pure Appl. Algebra, 204204 (2006), 280-299. · Zbl 1147.16012
[37] Vassiliev, V. A., Cohomology of knot spaces, Theory of singularities and its applications, Amer. Math. Soc., (1990), 23-69. · Zbl 0727.57008
[38] Voronov A. A., The Swiss-cheese operad, Ho-motopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., Amer. Math. Soc., 239 (1999), 365-373.
[39] Willwacher T., M. Kontsevich’s graph com-plex and the Grothendieck-Teichmüller Lie algebra, Invent. Math., 200 (2014), 671-760. · Zbl 1394.17044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.