×

Pathology and asymmetry: centralizer rigidity for partially hyperbolic diffeomorphisms. (English) Zbl 1497.37036

One of the classical questions in perturbation theory is: what kind of perturbation can be added to a diffeomorphism in such a way that both the diffeomorphism and the perturbed one belong to smooth flows? This paper gives an answer for algebraic geodesic flows in negative curvature in the conservative setting.
Consider as examples the discretized geodesic flows over hyperbolic manifolds and certain toral automorphisms with simple spectrum and exactly one eigenvalue on the unit circle. The authors consider a large class of algebraic systems and smooth ergodic perturbations. They show that the smooth centralizer is either virtually \(\mathbb{Z}^l\) or contains a smooth flow, where the centralizer of a diffeomorphism \(f: M \to M\) is the set of diffeomorphisms \(g\) that commute with \(f\) under composition: \(f\circ g = g\circ f\).
The authors use a combination of many powerful techniques and some of them are new. Among them: a novel geometric approach to build new partially hyperbolic elements in hyperbolic Weyl chambers via Pesin theory and leafwise conjugacy, measure rigidity via thermodynamic formalism for circle extensions of Anosov diffeomorphisms, partially hyperbolic Livšic theory, nonstationary normal forms.
Reviewer: Xu Zhang (Weihai)

MSC:

37D30 Partially hyperbolic systems and dominated splittings
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C20 Generic properties, structural stability of dynamical systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. L. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus, Proc. Amer. Math. Soc. 16 (1965), no. 6, 1222-1225. · Zbl 0229.22013 · doi:10.2307/2035902
[2] A. Avila, M. Viana, and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity, I: Geodesic flows, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 6, 1435-1462. · Zbl 1352.37084 · doi:10.4171/JEMS/534
[3] A. Avila, M. Viana, and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity, II, Ergodic Theory Dynam. Systems, published online 31 May 2021. · Zbl 1493.37022 · doi:10.1017/etds.2021.42
[4] L. Barreira and Y. B. Pesin, Introduction to Smooth Ergodic Theory, Grad. Stud. Math. 148, Amer. Math. Soc., Providence, 2013. · Zbl 1336.37001 · doi:10.1090/gsm/148
[5] T. Barthelmé and A. Gogolev, Centralizers of partially hyperbolic diffeomorphisms in dimension 3, Discrete Contin. Dyn. Syst. 41 (2021), no. 9, 4477-4484. · Zbl 1489.37035 · doi:10.3934/dcds.2021044
[6] D. Bohnet, Partially hyperbolic diffeomorphisms with a compact center foliation with finite holonomy, Ph.D. dissertation, Universität Hamburg, Hamburg, 2011.
[7] C. Bonatti, S. Crovisier, G. M. Vago, and A. Wilkinson, Local density of diffeomorphisms with large centralizers, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 925-954. · Zbl 1163.58003 · doi:10.24033/asens.2085
[8] C. Bonatti, S. Crovisier, and A. Wilkinson, \[{C^1}\]-generic conservative diffeomorphisms have trivial centralizer, J. Mod. Dyn. 2 (2008), no. 2, 359-373. · Zbl 1149.37017 · doi:10.3934/jmd.2008.2.359
[9] C. Bonatti, S. Crovisier, and A. Wilkinson, \[ The {C^1} \]generic diffeomorphism has trivial centralizer, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 185-244. · Zbl 1177.37025 · doi:10.1007/s10240-009-0021-z
[10] C. Bonatti, I. Monteverde, A. Navas, and C. Rivas, \[ Rigidity for {C^1} \]actions on the interval arising from hyperbolicity, I: Solvable groups, Math. Z. 286 (2017), no. 3-4, 919-949. · Zbl 1433.37030 · doi:10.1007/s00209-016-1790-y
[11] A. Brown, F. R. Hertz, and Z. Wang, Smooth ergodic theory of \[{\mathbb{Z}^d} -actions \], preprint, arXiv:1610.09997v1 [math.DS].
[12] K. Burns, H. Masur, and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic, Ann. of Math. (2) 175 (2012), no. 2, 835-908. · Zbl 1254.37005 · doi:10.4007/annals.2012.175.2.8
[13] K. Burns and A. Wilkinson, Stable ergodicity of skew products, Ann. Sci. Éc. Norm. Supér. (4) 32 (1999), no. 6, 859-889. · Zbl 0942.37015 · doi:10.1016/S0012-9593(00)87721-6
[14] K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2) 171 (2010), no. 1, 451-489. · Zbl 1196.37057 · doi:10.4007/annals.2010.171.451
[15] L. Burslem, Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 55-87. · Zbl 1115.37021 · doi:10.1017/S0143385703000191
[16] S. Crovisier and R. Potrie, Introduction to partially hyperbolic dynamics, preprint, 2015, http://www.imo.universite-paris-saclay.fr/ crovisie/00-CP-Trieste-Version1.pdf.
[17] D. Damjanović and B. Fayad, On local rigidity of partially hyperbolic affine \[{\mathbb{Z}^k} actions \], J. Reine Angew. Math. 751 (2019), 1-26. · Zbl 1430.37031 · doi:10.1515/crelle-2016-0059
[18] D. Damjanović and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic \[{\mathbb{R}^k} actions \], Discrete Contin. Dyn. Syst. 13 (2005), no. 4, 985-1005. · Zbl 1109.37029 · doi:10.3934/dcds.2005.13.985
[19] D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions, I: KAM method and \[{\mathbb{Z}^k} \]actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805-1858. · Zbl 1209.37017 · doi:10.4007/annals.2010.172.1805
[20] D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions, II: The geometric method and restrictions of Weyl chamber flows on \[ \text{SL}(n,\mathbb{R})/ \Gamma \], Int. Math. Res. Not. IMRN 2011, no. 19, 4405-4430. · Zbl 1291.37027 · doi:10.1093/imrn/rnq252
[21] D. Damjanović, A. Wilkinson, and D. Xu, Global rigidity of conservative partially hyperbolic actions with compact center foliation, in preparation.
[22] D. Damjanović and D. Xu, Diffeomorphism group valued cocycles over higher-rank abelian Anosov actions, Ergodic Theory Dynam. Systems 40 (2020), no. 1, 117-141. · Zbl 1436.37038 · doi:10.1017/etds.2018.22
[23] D. Damjanović and D. Xu, On classification of higher rank Anosov actions on compact manifold, Israel J. Math. 238 (2020), no. 2, 745-806. · Zbl 1451.37037 · doi:10.1007/s11856-020-2038-4
[24] D. Damjanović and D. Xu, On conservative partially hyperbolic abelian actions with compact center foliation, preprint, arXiv:1706.03626v1 [math.DS].
[25] D. Dolgopyat and A. Wilkinson, Stable accessibility is \[{C^1} -dense \], Astérisque 287 (2003), 33-60. · Zbl 1213.37053
[26] D. Fisher, B. Kalinin, and R. Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, with appendix “A finite cover of an exotic nilmanifold is standard” by J. F. Davis, J. Amer. Math. Soc. 26 (2013), no. 1, 167-198. · Zbl 1338.37040 · doi:10.1090/S0894-0347-2012-00751-6
[27] T. Fisher, Trivial centralizers for axiom A diffeomorphisms, Nonlinearity 21 (2008), no. 11, 2505-2517. · Zbl 1173.37013 · doi:10.1088/0951-7715/21/11/002
[28] J. Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117-124. · Zbl 0191.21604 · doi:10.2307/1995062
[29] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. · Zbl 0146.28502 · doi:10.1007/BF01692494
[30] M. Guysinsky and A. Katok, Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett. 5 (1998), no. 1-2, 149-163. · Zbl 0988.37063 · doi:10.4310/MRL.1998.v5.n2.a2
[31] B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 645-666. · Zbl 0821.58032 · doi:10.1017/S0143385700008105
[32] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, Berlin, 1977. · Zbl 0355.58009
[33] H. Hu, W. Wu, and Y. Zhu, Unstable pressure and u-equilibrium states for partially hyperbolic diffeomorphisms, preprint, arXiv:1710.02816v1 [math.DS].
[34] D. Jungreis and M. Hirsch, Rigidity of centralizers of Anosov flows, Internat. J. Math. 2 (1991), no. 1, 37-40. · Zbl 0729.58045 · doi:10.1142/S0129167X91000041
[35] B. Kalinin, Livšic theorem for matrix cocycles, Ann. of Math. (2) 173 (2011), no. 2, 1025-1042. · Zbl 1238.37008 · doi:10.4007/annals.2011.173.2.11
[36] B. Kalinin, Non-stationary normal forms for contracting extensions, in preparation. · Zbl 07837925
[37] B. Kalinin and V. Sadovskaya, Global rigidity for totally nonsymplectic Anosov \[{\mathbb{Z}^k} actions \], Geom. Topol. 10 (2006), 929-954. · Zbl 1126.37015 · doi:10.2140/gt.2006.10.929
[38] B. Kalinin and R. Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007), no. 2, 468-490. · Zbl 1121.37026 · doi:10.1007/s00039-007-0602-2
[39] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[40] A. Katok, S. Katok, and K. Schmidt, Rigidity of measurable structure for \[{\mathbb{Z}^d} \]-actions by automorphisms of a torus, Comment. Math. Helv. 77 (2002), no. 4, 718-745. · Zbl 1035.37005 · doi:10.1007/PL00012439
[41] A. Katok and A. Kononenko, Cocycles’ stability for partially hyperbolic systems, Math. Res. Lett. 3 (1996), no. 2, 191-210. · Zbl 0853.58082 · doi:10.4310/MRL.1996.v3.n2.a6
[42] A. Katok and V. Niţică, Rigidity in Higher Rank Abelian Group Actions, I: Introduction and Cocycle Problem, Cambridge Tracts in Math. 185, Cambridge Univ. Press, Cambridge, 2011. · Zbl 1232.37003 · doi:10.1017/CBO9780511803550
[43] A. Katok, V. Niţică, and A. Török, Non-abelian cohomology of abelian Anosov actions, Ergodic Theory Dynam. Systems 20 (2000), no. 1, 259-288. · Zbl 0977.57042 · doi:10.1017/S0143385700000122
[44] A. Katok and R. J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 131-156. · Zbl 0819.58027
[45] A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math. 1997, no. 1, 287-314. · Zbl 0938.37010
[46] W. Klingenberg, Riemannian Geometry, De Gruyter Stud. Math. 1, De Gruyter, Berlin, 1982. · Zbl 0495.53036
[47] N. Kopell, “Commuting diffeomorphisms” in Global Analysis (Berkeley, 1968), Proc. Sympos. Pure Math. 14, Amer. Math. Soc., Providence, 1970, 165-184. · Zbl 0225.57020
[48] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), no. 3, 422-429. · Zbl 0242.58003 · doi:10.2307/2373551
[49] J. N. Mather, Characterization of Anosov diffeomorphisms, Indag. Math. (N.S.) 30 (1968), 479-483. · Zbl 0165.57001
[50] A. Navas, Groups of Circle Diffeomorphisms, University of Chicago Press, Chicago, 2011. · Zbl 1236.37002 · doi:10.7208/chicago/9780226569505.001.0001
[51] M. H. A. Newman, A theorem on periodic transformations of spaces, Q. J. Math. 2 (1931), 1-9. · Zbl 0001.22703 · doi:10.1093/qmath/os-2.1.1-a
[52] V. Niţică and A. Török, Cocycles over abelian TNS actions, Geom. Dedicata 102 (2003), no. 1, 65-90. · Zbl 1032.37018 · doi:10.1023/B:GEOM.0000006583.67322.55
[53] J. Palis and J.-C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori, Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), no. 1, 99-108. · Zbl 0675.58029
[54] J. Palis and J.-C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), no. 1, 81-98. · Zbl 0709.58022
[55] F. Paulin, “Outer automorphisms of hyperbolic groups and small actions on R-trees” in Arboreal Group Theory (Berkeley, 1988), Math. Sci. Res. Inst. Publ. 19, Springer, New York, 1991, 331-343. · Zbl 0804.57002 · doi:10.1007/978-1-4612-3142-4_12
[56] Y. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys 32 (1977), no. 4, 55-114. · Zbl 0383.58011
[57] Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math., Eur. Math. Soc. (EMS), Zürich, 2004. · Zbl 1098.37024 · doi:10.4171/003
[58] C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1-54. · Zbl 0684.58008 · doi:10.2307/2001206
[59] C. Pugh, M. Shub, and A. Wilkinson, Hölder foliations, Duke Math. J. 86 (1997), no. 3, 517-546. · Zbl 0877.58045 · doi:10.1215/S0012-7094-97-08616-6
[60] C. Pugh, M. Shub, and A. Wilkinson, Hölder foliations, revisited, J. Mod. Dyn. 6 (2012), no. 1, 79-120. · Zbl 1259.37024 · doi:10.3934/jmd.2012.6.79
[61] J. Rocha and P. Varandas, The centralizer of \[{C^r} \]-generic diffeomorphisms at hyperbolic basic sets is trivial, Proc. Amer. Math. Soc. 146 (2018), no. 1, 247-260. · Zbl 1379.37067 · doi:10.1090/proc/13712
[62] F. Rodriguez Hertz, Stable ergodicity of certain linear automorphisms of the torus, Ann. of Math. (2) 162 (2005), no. 1, 65-107. · Zbl 1098.37028 · doi:10.4007/annals.2005.162.65
[63] F. Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007), no. 3, 425-442. · Zbl 1130.37013 · doi:10.3934/jmd.2007.1.425
[64] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), no. 2, 353-381. · Zbl 1136.37020 · doi:10.1007/s00222-007-0100-z
[65] F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures, A non-dynamically coherent example on \[{\mathbb{T}^3} \], Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 4, 1023-1032. · Zbl 1380.37067 · doi:10.1016/j.anihpc.2015.03.003
[66] F. Rodriguez Hertz and Z. Wang, Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014), no. 1, 165-209. · Zbl 1312.37028 · doi:10.1007/s00222-014-0499-y
[67] V. A. Rokhlin, On the fundamental ideas of measure theory, Mat. Sb. (N.S.) 25(67) (1949), no. 1, 107-150. · Zbl 0033.16904
[68] V. Sadovskaya, On uniformly quasiconformal Anosov systems, Math. Res. Lett. 12 (2005), no. 2-3, 425-441. · Zbl 1081.37015 · doi:10.4310/MRL.2005.v12.n3.a12
[69] S. J. Schreiber, On growth rates of subadditive functions for semiflows, J. Differential Equations 148 (1998), no. 2, 334-350. · Zbl 0940.37007 · doi:10.1006/jdeq.1998.3471
[70] Z. Sela, The isomorphism problem for hyperbolic groups, I, Ann. of Math. (2) 141 (1995), no. 2, 217-283. · Zbl 0868.57005 · doi:10.2307/2118520
[71] M. Shub and A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math. 139 (2000), no. 3, 495-508. · Zbl 0976.37013 · doi:10.1007/s002229900035
[72] S. Smale, Dynamics retrospective: Great problems, attempts that failed, Phys. D 51 (1991), no. 1-3, 267-273. · Zbl 0745.58018 · doi:10.1016/0167-2789(91)90238-5
[73] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), no. 2, 7-15. · Zbl 0947.01011 · doi:10.1007/BF03025291
[74] R. Spatzier and K. Vinhage, Cartan actions of higher rank abelian groups and their classification, preprint, arXiv:1901.06559v3 [math.DS].
[75] K. Vinhage and Z. J. Wang, Local rigidity of higher rank homogeneous abelian actions: A complete solution via the geometric method, Geom. Dedicata 200 (2019), 385-439. · Zbl 1427.22013 · doi:10.1007/s10711-018-0379-5
[76] A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque 358 (2013), 75-165 · Zbl 1348.37054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.