Hodge theory of Kloosterman connections. (English) Zbl 1498.14019

This paper is concerned with a conjecture by D. Broadhurst [Commun. Number Theory Phys. 10, No. 3, 527–569 (2016; Zbl 1362.81072)]. In particular, the paper proves the conjecture about \(L\)-functions of symmetric power moments of Kloosterman sums.
Let \(p\) be a prime, and let \({\mathbb{F}}_p\) be the finite field with \(p\) elements, and \(\bar{\mathbb{F}}_p\) be its algebraic closure. If \(q\) is a power of \(p\), let \({\mathbb{F}}_q\) be the subfield of \(\bar{\mathbb{F}}_p\) with \(q\) elements, and let \({\mathrm{tr}}\) be the trace map from \(\mathbb{F}_q\to \mathbb{F}_p\). Fix a nontrivial additive character \(\psi: \mathbb{F}_p\to \mathbb{C}^{\times}\). For each \(a\in\mathbb{F}_q^{\times}\), the Kloosterman sum is the real number \(Kl_2(a;q)=\sum_{x\in\mathbb{F}^{\times}_q} \psi(\mathrm{tr}_{\mathbb{F}_q/\mathbb{F}_p}(x+a/x))\). By Weil, it is known that \(Kl_2(a;q)=-(\alpha_a+\beta_a)\) for some algebraic integers \(\alpha_a, \beta_a\) of absolute value \(\sqrt{q}\) with \(\alpha_a\beta_a=q\). For any integer \(k\geq 1\), the \(k\)-th symmetric power of Kloosterman sums is defined as \(Kl_2^{{\mathrm{Sym}}^k}(a;q)=\sum_{i=0}^k \alpha_a^i\beta_a^{k-i}\), and summing over over \(a\), the moments is defined as \(m_2^k(q)=\sum_{a\in{\mathbb{F}}_q^{\times}} Kl_2^{{\mathrm{Sym}}^k}(a;q)\). Form the zeta-function \(Z_k(p;T)=\exp(\sum_{n=1}^{\infty}m_2^k(p^n)\frac{T^n}{n})\). Then \(Z_k(p;T)\) is a polynomial which is always divisible by \(1-T\). Denote by \(M_k(p;T)\) the polynomial obtained from \(Z_k(p;T)\) removing the so-called trivial factors. Then all its roots have the absolute value \(p^{-(k+1)/2}\). The global \(L\)-function over \({\mathbb{Q}}\) is then defined by \(L_k(s)=\prod_{p\not\in S} M_k(p;s)\) where \(S\) is a set of bad primes appropriately defined depending on \(k\) is odd or even.
The main results are formulated in the following two theorems.
Theorem 1: Assume that \(k\) is odd. Let \(S\) be the set of odd primes smaller than or equal to \(k\). Then the function \(L_k(s)\) admits meromorphic continuation to the complex plane and satisfies the function equation \(\Lambda_k(s)=\Lambda_k(K-2-s)\).
Theorem 2: Assume that \(k\) is even (e.g., \(k=2m+4\) or \(2m+2\) with \(m\) even). Let \(S\) be the set of all primes smaller than or equal to \(k/2\). Then the function \(L_k(s)\) meromorphically extends to the complex plane. Morevoer, there exists a sign \(\varepsilon_k\in\{\pm 1\}\), an integer \(r_k\geq 0\), and a reciprocal of a polynomial with rational coefficients \(L_k(2;T)\) such that, setting \(\Lambda_k(s)=2^{r_ks/2}\Lambda_k(2;2^{-s})\Lambda_k^{\prime}(s)\) (where \(\Lambda_k(s)^{\prime}\) is an extension of \(L_k(s)\) outside the prime \(2\)), the following functional equation holds: \(\Lambda_k(s)=\varepsilon_k\Lambda_k(k+2-s)\).
Theorems 1 and 2 and the modulairty of \(L\)-functions are known for \(k\leq 8\).
The idea of proof is to give a cohomological interpretation for the \(L\)-functions. Let \(Kl_2\) denote the Kloosterman sheaf, which is a rank-\(2\) lisse sheaf on \(\mathbb{G}_{m,{\mathbb{F}}_p}\). Let \(\mathrm{Sym}^k Kl_2\) be the symmetric power of \(Kl_2\). Then \(Z_k(p,T)\) is given by the characteristic polynomial of the Frobenius \(F_p\) on \(H^1_{et,c}(\mathbb{G}_{m,\bar{\mathbb{F}}_p}, {\mathrm{Sym}}^k Kl_2)\). Removing the trivial factors from \(Z_p(p,T)\) amounts to replace the etale cohomology with compact support with middle extension cohomology \(H^1_{et,mid}(\mathbb{G}_{m, \bar{\mathbb{F}}_p}, {\mathrm{Sym}}^k Kl_2)\). Let \(M_k(p,T)\) be the characteristic polynomial of \(F_p\) on this middle extension cohomology.
Motives of symmetric powers of Kloosterman connections are constructed, and their Hodge numbers are computed in terms of the irregular Hodge filrtation on their relaizations as exponential mixed Hodge structures. It is shown that \(H^1(\mathbb{G}_m, \mathrm{Sym}^k Kl_2)\) has the mixed Hodge structure of weight at least \(k+1\), and that all Hodge numbers are either \(0\) or \(1\). This implies the potential automorphy of these motives.


14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11F80 Galois representations
11L05 Gauss and Kloosterman sums; generalizations
14F40 de Rham cohomology and algebraic geometry
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)


Zbl 1362.81072
Full Text: DOI arXiv Link


[1] A. ADOLPHSON and S. SPERBER, On twisted de Rham cohomology, Nagoya Math. J. 146 (1997), 55-81. · Zbl 0915.14012
[2] T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501-609. · Zbl 1310.11060
[3] A. BEILINSON, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1-51. · Zbl 1351.14011
[4] D. BROADHURST, Feynman integrals, L-series and Kloosterman moments, Commun. Number Theory Phys. 10 (2016), no. 3, 527-569. · Zbl 1362.81072
[5] D. BROADHURST, Critical L-values for products of up to 20 Bessel functions, preprint, 2017, https://www.matrix-inst.org.au/wp_Matrix2016/wp-content/uploads/2016/04/Broadhurst-2.pdf.
[6] R. CREW, Kloosterman sums and monodromy of a p-adic hypergeometric equation, Compos. Math. 91 (1994), no. 1, 1-36. · Zbl 0806.14018
[7] P. DELIGNE, “Les constantes des équations fonctionnelles des fonctions \(L\)” in Modular Functions of One Variable, II (Antwerp, 1972), Lecture Notes in Math. 349, Springer, Berlin, 1973, 501-597.
[8] P. DELIGNE, “Applications de la formule des traces aux sommes trigonométriques” in Cohomologie étale, Lecture Notes in Math. 569, Springer, Berlin, 1977, 168-232.
[9] P. DELIGNE, “Valeurs de fonctions \(L\) et périodes d’intégrales” in Automorphic Forms, Representations and L-Functions (Corvallis, 1977), Part 2, with appendix “Algebraicity of some products of values of the \(τ\)-function” by N. Koblitz and A. Ogus, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 313-346.
[10] P. DELIGNE, La conjecture de Weil, II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), no. 1, 137-252. · Zbl 0456.14014
[11] P. DELIGNE and N. KATZ, eds., Groupes de monodromie en géométrie algébrique, II, Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA7), Lecture Notes in Math. 340, Springer, Berlin, 1973.
[12] P. DELIGNE, B. MALGRANGE, and J.-P. RAMIS, Singularités irrégulières, Correspondance et documents, Doc. Math. (Paris) 5, Soc. Math. France, Paris, 2007. · Zbl 1130.14001
[13] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), no. 2, 275-294. · Zbl 0763.14025
[14] M. DETTWEILER and C. SABBAH, Hodge theory of the middle convolution, Publ. Res. Inst. Math. Sci. 49 (2013), no. 4, 761-800. Erratum, Publ. Res. Inst. Math. Sci. 54 (2018) no. 2, 427-431. · Zbl 1307.14015
[15] H. ESNAULT, C. SABBAH, and J.-D. YU, \[{E_1}\]-degeneration of the irregular Hodge filtration, with appendix “On the Kontsevich-de Rahm complexes and Beilinson’s maximal extensions” by M. Saito, J. Reine Angew. Math. 729 (2017), 171-227. · Zbl 1453.32010
[16] R. EVANS, \[ Hypergeometric {_3}{F_2}(1/ 4)\]evaluations over finite fields and Hecke eigenforms, Proc. Amer. Math. Soc. 138 (2010), no. 2, 517-531. · Zbl 1268.11158
[17] R. EVANS, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), no. 1, 349-362. · Zbl 1242.11059
[18] E. FREITAG and R. KIEHL, Étale Cohomology and the Weil Conjecture, Ergeb. Math. Grenzgeb. (3) 13, Springer, Berlin, 1988. · Zbl 0643.14012
[19] J. FRESÁN and P. JOSSEN, Exponential motives, in preparation, http://javier.fresan.perso.math.cnrs.fr/expmot.pdf.
[20] J. FRESÁN, C. SABBAH, and J.-D. YU, Quadratic relations between Bessel moments, preprint, arXiv:2006.02702v2 [math.AG].
[21] L. FU and D. WAN, L-functions for symmetric products of Kloosterman sums, J. Reine Angew. Math. 589 (2005), 79-103. · Zbl 1165.11331
[22] L. FU and D. WAN, L-functions of symmetric products of the Kloosterman sheaf over Z, Math. Ann. 342 (2008), no. 2, 387-404. · Zbl 1151.11041
[23] L. FU and D. WAN, Functional equations of L-functions for symmetric products of the Kloosterman sheaf, Trans. Amer. Math. Soc. 362 (2010), no. 11, 5947-5965. · Zbl 1219.14031
[24] W. FULTON and J. HARRIS, Representation Theory: A First Course, Grad. Texts in Math. 129, Springer, New York, 1991. · Zbl 0744.22001
[25] C. D. HAESSIG, L-functions of symmetric powers of Kloosterman sums (unit root L-functions and p-adic estimates), Math. Ann. 369 (2017), nos. 1-2, 17-47. · Zbl 1405.11114
[26] C. D. HAESSIG, Kloosterman sums and Hecke polynomials in characteristics 2 and 3, Finite Fields Appl. 76 (2021), no. 101896. · Zbl 1475.11142
[27] R. HOTTA, K. TAKEUCHI, and T. TANISAKI, D-Modules, Perverse Sheaves, and Representation Theory, Progr. Math. 236, Birkhäuser, Boston, 2008. · Zbl 1136.14009
[28] A. HUBER and S. MÜLLER-STACH, Periods and Nori Motives, Ergeb. Math. Grenzgeb. (3) 65, Springer, Cham, 2017. · Zbl 1369.14001
[29] K. HULEK, J. SPANDAW, B. VAN GEEMEN, and D. VAN STRATEN, The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289. · Zbl 1014.14021
[30] L. ILLUSIE, Perversité et variation, Manuscripta Math. 112 (2003), no. 3, 271-295. · Zbl 1036.14008
[31] M. KASHIWARA, D-Modules and Microlocal Calculus, Transl. Math. Monogr. 217, Amer. Math. Soc., Providence, 2003. · Zbl 1017.32012
[32] N. M. KATZ, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13-61. · Zbl 0609.12025
[33] N. M. KATZ, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, 1988. · Zbl 0675.14004
[34] N. M. KATZ, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, Princeton, 1990. · Zbl 0731.14008
[35] K. S. KEDLAYA, Fourier transforms and p-adic “Weil II,” Compos. Math. 142 (2006), no. 6, 1426-1450. · Zbl 1119.14014
[36] M. KONTSEVICH and Y. SOIBELMAN, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231-352. · Zbl 1248.14060
[37] G. LAUMON, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 131-210. · Zbl 0641.14009
[38] B. LE STUM, Rigid Cohomology, Cambridge Tracts in Math. 172, Cambridge Univ. Press, Cambridge, 2007.
[39] R. LIVNÉ, Motivic orthogonal two-dimensional representations of \[ \text{Gal}(\overline{\mathbf{Q}}/ \mathbf{Q})\], Israel J. Math. 92 (1995), no. 1-3, 149-156. · Zbl 0847.11035
[40] B. MALGRANGE, Équations différentielles à coefficients polynomiaux, Progr. Math. 96, Birkhäuser, Boston, 1991. · Zbl 0764.32001
[41] Y. MATSUI and K. TAKEUCHI, Monodromy at infinity of polynomial maps and Newton polyhedra, with an appendix by C. Sabbah, Int. Math. Res. Not. IMRN 2013, no. 8, 1691-1746. · Zbl 1314.32044
[42] Y. MIEDA, The Picard-Lefschetz formula for p-adic cohomology, Math. Z. 257 (2007), no. 2, 403-425. · Zbl 1131.14020
[43] T. MOCHIZUKI, Twistor property of GKZ-hypergeometric systems, preprint, arXiv:1501.04146v2 [math.AG].
[44] S. PATRIKIS and R. TAYLOR, Automorphy and irreducibility of some ℓ-adic representations, Compos. Math. 151 (2015), no. 2, 207-229. · Zbl 1322.11055
[45] C. PETERS, J. TOP, and M. VAN DER VLUGT, The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176. · Zbl 0749.14037
[46] P. ROBBA, Symmetric powers of the p-adic Bessel equation, J. Reine Angew. Math. 366 (1986), 194-220. · Zbl 0574.12021
[47] D. P. ROBERTS, Some Feynman integrals and their motivic interpretation, preprint, 2017, http://static1.squarespace.com/static/577da80de3df288b496f8cf7/t/5b84814bb8a0450613a5c1e8/1535410508300/BesselKloosterman.pdf.
[48] C. SABBAH, Hypergeometric periods for a tame polynomial, Port. Math. 63 (2006), no. 2, 173-226. · Zbl 1113.14011
[49] C. SABBAH, “An explicit stationary phase formula for the local formal Fourier-Laplace transform” in Singularities, Vol. 1, Contemp. Math. 474, Amer. Math. Soc., Providence, 2008, 309-330. · Zbl 1162.32018
[50] C. SABBAH, “Fourier-Laplace transform of a variation of polarized complex Hodge structure, II” in New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (Kyoto, 2008), Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo, 2010, 289-347.
[51] C. SABBAH, Irregular Hodge Theory, Mém. Soc. Math. France (N.S.) 156, Soc. Math. France, Paris, 2018. · Zbl 1422.14003
[52] C. SABBAH and J.-D. YU, On the irregular Hodge filtration of exponentially twisted mixed Hodge modules, Forum Math. Sigma 3 (2015), no. e9. · Zbl 1319.14028
[53] M. SAITO, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849-995. · Zbl 0691.14007
[54] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333. · Zbl 0727.14004
[55] T. SAITO, The sign of the functional equation of the L-function of an orthogonal motive, Invent. Math. 120 (1995), no. 1, 119-142. · Zbl 0821.14011
[56] T. SAITO, The discriminant and the determinant of a hypersurface of even dimension, Math. Res. Lett. 19 (2012), no. 4, 855-871. · Zbl 1285.14046
[57] J.-P. SERRE, Facteurs locaux des fonctions zêta des varietés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou 1969-1970, no. 2, Théor. Nombres 11, Secrétariat Math., Paris, 1970.
[58] J.-P. SERRE, “On the mod \(p\) reduction of orthogonal representations” in Lie Groups, Geometry, and Representation Theory, Progr. Math. 326, Birkhäuser/Springer, Cham, 2018, 527-540. · Zbl 1455.20009
[59] J. H. M. STEENBRINK and S. ZUCKER, Variation of mixed Hodge structure, I, Invent. Math. 80 (1985), 489-542. · Zbl 0626.14007
[60] R. TAYLOR, Galois representations, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 1, 73-119. · Zbl 1074.11030
[61] N. TSUZUKI, On the Gysin isomorphism of rigid cohomology, Hiroshima Math. J. 29 (1999), no. 3, 479-527. · Zbl 1019.14007
[62] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. · Zbl 0032.26102
[63] J.-D. YU, Irregular Hodge filtration on twisted de Rham cohomology, Manuscripta Math. 144 (2014), no. 1-2, 99-133. · Zbl 1291.14040
[64] Z. YUN, Galois representations attached to moments of Kloosterman sums and conjectures of Evans, with an appendix by C. Vincent, Compos. Math. 151 (2015), no. 1, 68-120. · Zbl 1320.11072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.