The phase structure of asymmetric ballistic annihilation. (English) Zbl 1498.60388

Summary: Ballistic annihilation is an interacting system in which particles placed throughout the real line move at preassigned velocities and annihilate upon colliding. The longstanding conjecture that in the symmetric three-velocity setting there exists a phase transition for the survival of middle-velocity particles was recently resolved by J. Haslegrave et al. [Sel. Math., New Ser. 27, No. 5, Paper No. 84, 38 p. (2021; Zbl 1470.60279)]. We develop a framework based on a mass transport principle to analyze three-velocity ballistic annihilation with asymmetric velocities assigned according to an asymmetric probability measure. We show the existence of a phase transition in all cases by deriving universal bounds. In particular, all middle-speed particles perish almost surely if their initial density is less than \(1/5\), regardless of the velocities, relative densities, and spacing of initial particles. We additionally prove the continuity of several fundamental statistics as the probability measure is varied.


60K35 Interacting random processes; statistical mechanics type models; percolation theory


Zbl 1470.60279
Full Text: DOI arXiv


[1] BEN-NAIM, E., REDNER, S. and LEYVRAZ, F. (1993). Decay kinetics of ballistic annihilation. Phys. Rev. Lett. 70 1890-1893. · doi:10.1103/PhysRevLett.70.1890
[2] BENITEZ, L., JUNGE, M., LYU, H., REDMAN, M. and REEVES, L. (2020). Three-velocity coalescing ballistic annihilation. Available at arXiv:2010.15855.
[3] BROUTIN, N. and MARCKERT, J.-F. (2020). The combinatorics of the colliding bullets. Random Structures Algorithms 56 401-431. · Zbl 1446.60008 · doi:10.1002/rsa.20869
[4] BURDINSKI, D., GUPTA, S. and JUNGE, M. (2019). The upper threshold in ballistic annihilation. ALEA Lat. Am. J. Probab. Math. Stat. 16 1077-1087. · Zbl 1488.60227 · doi:10.30757/alea.v16-39
[5] Cabezas, M., Rolla, L. T. and Sidoravicius, V. (2018). Recurrence and density decay for diffusion-limited annihilating systems. Probab. Theory Related Fields 170 587-615. · Zbl 1429.60071 · doi:10.1007/s00440-017-0763-3
[6] CARNEVALE, G. F., POMEAU, Y. and YOUNG, W. R. (1990). Statistics of ballistic agglomeration. Phys. Rev. Lett. 64 2913-2916.
[7] Damron, M., Gravner, J., Junge, M., Lyu, H. and Sivakoff, D. (2019). Parking on transitive unimodular graphs. Ann. Appl. Probab. 29 2089-2113. · Zbl 1466.60201 · doi:10.1214/18-AAP1443
[8] DAMRON, M., LYU, H. and SIVAKOFF, D. (2021). Stretched exponential decay for subcritical parking times on \[{\mathbb{Z}^d} \]. Random Structures Algorithms 59 143-154. · Zbl 1523.60162 · doi:10.1002/rsa.21001
[9] DROZ, M., REY, P. A., FRACHEBOURG, L. and PIASECKI, J. (1995). Ballistic-annihilation kinetics for a multivelocity one-dimensional ideal gas. Phys. Rev., E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 51 5541-5548. · doi:10.1103/physreve.51.5541
[10] DYGERT, B., KINZEL, C., JUNGE, M., RAYMOND, A., SLIVKEN, E. and ZHU, J. (2019). The bullet problem with discrete speeds. Electron. Commun. Probab. 24 Paper No. 27. · Zbl 1488.60230 · doi:10.1214/19-ECP238
[11] ELSKENS, Y. and FRISCH, H. L. (1985). Annihilation kinetics in the one-dimensional ideal gas. Phys. Rev. A 31 3812-3816.
[12] ERMAKOV, A., TÓTH, B. and WERNER, W. (1998). On some annihilating and coalescing systems. J. Stat. Phys. 91 845-870. · Zbl 0921.60086 · doi:10.1023/A:1023071714672
[13] Foxall, E. and Lyu, H. (2018). Clustering in the three and four color cyclic particle systems in one dimension. J. Stat. Phys. 171 470-483. · Zbl 1395.82149 · doi:10.1007/s10955-018-2004-2
[14] HASLEGRAVE, J., SIDORAVICIUS, V. and TOURNIER, L. (2021). Three-speed ballistic annihilation: Phase transition and universality. Selecta Math. (N.S.) 27 Paper No. 84. · Zbl 1470.60279 · doi:10.1007/s00029-021-00701-x
[15] HASLEGRAVE, J. and TOURNIER, L. (2021). Combinatorial universality in three-speed ballistic annihilation. In In and Out of Equilibrium 3. Celebrating Vladas Sidoravicius. Progress in Probability 77 487-517. Birkhäuser/Springer, Cham. · Zbl 1469.60336 · doi:10.1007/978-3-030-60754-8_23
[16] KANG, K. and REDNER, S. (1984). Scaling approach for the kinetics of recombination processes. Phys. Rev. Lett. 52 955-958.
[17] KRAPIVSKY, P., REDNER, S. and LEYVRAZ, F. (1995). Ballistic annihilation kinetics: The case of discrete velocity distributions. Phys. Rev. E 51 3977.
[18] KRAPIVSKY, P. L. and SIRE, C. (2001). Ballistic annihilation with continuous isotropic initial velocity distribution. Phys. Rev. Lett. 86 2494-2497. · doi:10.1103/PhysRevLett.86.2494
[19] MEAKIN, P. and STANLEY, H. E. (1984). Novel dimension-independent behaviour for diffusive annihilation on percolation fractals. J. Phys. A: Math. Gen. 17 L173.
[20] MUNKRES, J. R. (1975). Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0306.54001
[21] PIASECKI, J. (1995). Ballistic annihilation in a one-dimensional fluid. Phys. Rev. E 51 5535.
[22] SIDORAVICIUS, V. and TOURNIER, L. (2017). Note on a one-dimensional system of annihilating particles. Electron. Commun. Probab. 22 Paper No. 59. · Zbl 1386.60327 · doi:10.1214/17-ECP83
[23] TOUSSAINT, D. and WILCZEK, F. (1983). Particle-antiparticle annihilation in diffusive motion. J. Chem. Phys. 78 2642-2647
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.