×

Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak. (English) Zbl 1498.62256

Summary: As the coronavirus disease 2019 (COVID-19) has shown profound effects on public health and the economy worldwide, it becomes crucial to assess the impact on the virus transmission and develop effective strategies to address the challenge. A new statistical model, derived from the SIR epidemic model with functional parameters, is proposed to understand the impact of weather and government interventions on the virus spread in the presence of asymptomatic infections among eight metropolitan areas in the United States. The model uses Bayesian inference with Gaussian process priors to study the functional parameters nonparametrically, and sensitivity analysis is adopted to investigate the main and interaction effects of these factors. This analysis reveals several important results, including the potential interaction effects between weather and government interventions, which shed new light on the effective strategies for policymakers to mitigate the COVID-19 outbreak.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62G08 Nonparametric regression and quantile regression
62F15 Bayesian inference

Software:

R
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ALMUKHTAR, S., AUFRICHTIG, A., BARNARD, A., BLOCH, M., CAI, W., CALDERONE, J., COLLINS, K., CONLEN, M., COOK, L. et al. (2020). Coronavirus in the US: Latest map and case count. The New York Times.
[2] AMBROSIO, B. and AZIZ-ALAOUI, M. (2020). On a coupled time-dependent SIR models fitting with New York and New-Jersey states COVID-19 data. Biology (Basel) 9 135.
[3] ANSUMALI, S., KAUSHAL, S., KUMAR, A., PRAKASH, M. K. and VIDYASAGAR, M. (2020). Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2. Annu. Rev. Control 50 432-447. · doi:10.1016/j.arcontrol.2020.10.003
[4] BANERJEE, S. and GELFAND, A. E. (2002). Prediction, interpolation and regression for spatially misaligned data. Sankhyā Ser. A 64 227-245. · Zbl 1192.62205
[5] BROWN, D. A. and ATAMTURKTUR, S. (2018). Nonparametric functional calibration of computer models. Statist. Sinica 28 721-742. · Zbl 1390.62044
[6] CAFLISCH, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7 1-49. · Zbl 0949.65003 · doi:10.1017/S0962492900002804
[7] CARSON, R. T., CARSON, S. L., DYE, T. K., MAYFIELD, S. L., MOYER, D. C. and CHU, A. Y. (2020). COVID-19’s US temperature response profile. MedRxiv.
[8] CAUCHEMEZ, S., NOUVELLET, P., CORI, A., JOMBART, T., GARSKE, T., CLAPHAM, H., MOORE, S., MILLS, H. L., SALJE, H. et al. (2016). Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. USA 113 9081-9086.
[9] CHEN, Y.-C., LU, P.-E., CHANG, C.-S. and LIU, T.-H. (2020). A time-dependent SIR model for COVID-19 with undetectable infected persons. IEEE Trans. Netw. Sci. Eng. 7 3279-3294.
[10] COOPER, I., MONDAL, A. and ANTONOPOULOS, C. G. (2020). A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 139 110057, 14. · doi:10.1016/j.chaos.2020.110057
[11] COWLING, B. J., HO, L. M. and LEUNG, G. M. (2008). Effectiveness of control measures during the SARS epidemic in Beijing: A comparison of the Rt curve and the epidemic curve. Epidemiol. Infect. 136 562-566.
[12] COWLING, B. J., ALI, S. T., NG, T. W., TSANG, T. K., LI, J. C., FONG, M. W., LIAO, Q., KWAN, M. Y., LEE, S. L. et al. (2020). Impact assessment of non-pharmaceutical interventions against COVID-19 and influenza in Hong Kong: An observational study. Lancet Public Health 5 e279-e288.
[13] D’ARIENZO, M. and CONIGLIO, A. (2020). Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosafety and Health.
[14] DIEKMANN, O., HEESTERBEEK, H. and BRITTON, T. (2013). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton Series in Theoretical and Computational Biology. Princeton Univ. Press, Princeton, NJ. · Zbl 1304.92009
[15] DIETZ, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2 23-41. · doi:10.1177/096228029300200103
[16] FLAXMAN, S., MISHRA, S., GANDY, A., UNWIN, H. J. T., MELLAN, T. A., COUPLAND, H., WHITTAKER, C., ZHU, H., BERAH, T. et al. (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584 257-261.
[17] Fricker, T. E., Oakley, J. E. and Urban, N. M. (2013). Multivariate Gaussian process emulators with nonseparable covariance structures. Technometrics 55 47-56. · doi:10.1080/00401706.2012.715835
[18] GUPTA, A., PRADHAN, B. and MAULUD, K. N. A. (2020). Estimating the impact of daily weather on the temporal pattern of COVID-19 outbreak in India. Earth Systems and Environment 4 523-534.
[19] HALDAR, A. and SETHI, N. (2020). The effect of country-level factors and government intervention on the incidence of COVID-19. Asian Economics Letters 1 17804.
[20] HAUG, N., GEYRHOFER, L., LONDEI, A., DERVIC, E., DESVARS-LARRIVE, A., LORETO, V., PINIOR, B., THURNER, S. and KLIMEK, P. (2020). Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 1-10.
[21] HE, X., LAU, E. H., WU, P., DENG, X., WANG, J., HAO, X., LAU, Y. C., WONG, J. Y., GUAN, Y. et al. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 26 672-675.
[22] HEESTERBEEK, H., ANDERSON, R. M., ANDREASEN, V., BANSAL, S., DE ANGELIS, D., DYE, C., EAMES, K. T., EDMUNDS, W. J., FROST, S. D. et al. (2015). Modeling infectious disease dynamics in the complex landscape of global health. Science 347 aaa4339.
[23] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 293-325. · Zbl 0032.04101 · doi:10.1214/aoms/1177730196
[24] HONG, H. G. and LI, Y. (2020). Estimation of time-varying reproduction numbers underlying epidemiological processes: A new statistical tool for the COVID-19 pandemic. PLoS ONE 15 e0236464.
[25] JAMIL, T., ALAM, I., GOJOBORI, T. and DUARTE, C. M. (2020). No evidence for temperature-dependence of the COVID-19 epidemic. Frontiers in Public Health 8 436.
[26] Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 425-464. · Zbl 1007.62021 · doi:10.1111/1467-9868.00294
[27] KERMACK, W. O. and MCKENDRICK, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 115 700-721.
[28] LE GRATIET, L., CANNAMELA, C. and IOOSS, B. (2014). A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes. SIAM/ASA J. Uncertain. Quantificat. 2 336-363. · Zbl 1308.62107 · doi:10.1137/130926869
[29] LEE, J. C., MERVOSH, S., AVILA, Y., HARVEY, B., MATTHEWS, A. L., GAMIO, L., POPOVICH, N., MCCANN, A. and KEEFE, J. (2020). See coronavirus restrictions and mask mandates for all 50 states. The New York Times.
[30] LI, R., PEI, S., CHEN, B., SONG, Y., ZHANG, T., YANG, W. and SHAMAN, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368 489-493.
[31] LIU, Y., YAN, L.-M., WAN, L., XIANG, T.-X., LE, A., LIU, J.-M., PEIRIS, M., POON, L. L. and ZHANG, W. (2020). Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 20 656-657.
[32] Mak, S., Sung, C.-L., Wang, X., Yeh, S.-T., Chang, Y.-H., Joseph, V. R., Yang, V. and Wu, C. F. J. (2018). An efficient surrogate model for emulation and physics extraction of large eddy simulations. J. Amer. Statist. Assoc. 113 1443-1456. · Zbl 1409.62258 · doi:10.1080/01621459.2017.1409123
[33] NOH, J. and DANUSER, G. (2021). Estimation of the fraction of COVID-19 infected people in US states and countries worldwide. PLoS ONE 16 e0246772.
[34] OSTHUS, D., HICKMANN, K. S., CARAGEA, P. C., HIGDON, D. and DEL VALLE, S. Y. (2017). Forecasting seasonal influenza with a state-space SIR model. Ann. Appl. Stat. 11 202-224. · Zbl 1366.62236 · doi:10.1214/16-AOAS1000
[35] PEI, S., YAMANA, T. K., KANDULA, S., GALANTI, M. and SHAMAN, J. (2021). Burden and characteristics of COVID-19 in the United States during 2020. Nature to appear.
[36] PIAZZOLA, C., TAMELLINI, L. and TEMPONE, R. (2021). A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology. Math. Biosci. 332 Paper No. 108514, 21. · Zbl 1475.92186 · doi:10.1016/j.mbs.2020.108514
[37] PLUMLEE, M., JOSEPH, V. R. and YANG, H. (2016). Calibrating functional parameters in the ion channel models of cardiac cells. J. Amer. Statist. Assoc. 111 500-509. · doi:10.1080/01621459.2015.1119695
[38] Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008). Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50 383-396. · doi:10.1198/004017008000000262
[39] R Core Team (2018). \(R\): A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[40] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. · Zbl 1177.68165
[41] ROBINSON, M. and STILIANAKIS, N. I. (2013). A model for the emergence of drug resistance in the presence of asymptomatic infections. Math. Biosci. 243 163-177. · Zbl 1281.92042 · doi:10.1016/j.mbs.2013.03.003
[42] RODA, W. C., VARUGHESE, M. B., HAN, D. and LI, M. Y. (2020). Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 5 271-281.
[43] Santner, T. J., Williams, B. J. and Notz, W. I. (2018). The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York. Second edition of [MR2160708]. · Zbl 1405.62110
[44] SOBOL’, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1 407-414 (1995). · Zbl 1039.65505
[45] SOUCY, J.-P. R., STURROCK, S. L., BERRY, I., DANEMAN, N., MACFADDEN, D. R. and BROWN, K. A. (2020). Estimating the effect of physical distancing on the COVID-19 pandemic using an urban mobility index. MedRxiv.
[46] SUNG, C. L. (2022). Supplement to “Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak.” https://doi.org/10.1214/22-AOAS1601SUPPA, https://doi.org/10.1214/22-AOAS1601SUPPB
[47] SUNG, C.-L. and HUNG, Y. (2020). Efficient calibration for imperfect epidemic models with applications to the analysis of COVID-19. arXiv preprint arXiv:2009.12523.
[48] SVENSON, J. and SANTNER, T. (2016). Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models. Comput. Statist. Data Anal. 94 250-264. · Zbl 1468.62186 · doi:10.1016/j.csda.2015.08.011
[49] Tuo, R. and Wu, C. F. J. (2015). Efficient calibration for imperfect computer models. Ann. Statist. 43 2331-2352. · Zbl 1326.62228 · doi:10.1214/15-AOS1314
[50] U. S. CENTERS FOR DISEASE CONTROL AND PREVENTION (2021). Estimated disease burden of COVID-19. Available at https://www.cdc.gov/coronavirus/2019-ncov/.
[51] WANG, G., ZHANG, Y., ZHAO, J., ZHANG, J. and JIANG, F. (2020). Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 395 945-947.
[52] THE WEATHER COMPANY (2020). Weather underground. Available at https://www.wunderground.com/.
[53] Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris, M. D. (1992). Screening, predicting, and computer experiments. Technometrics 34 15-25.
[54] WILSON, D. J. (2020). Weather, social distancing, and the spread of COVID-19. MedRxiv.
[55] WÖLFEL, R., CORMAN, V. M., GUGGEMOS, W., SEILMAIER, M., ZANGE, S., MÜLLER, M. A., NIEMEYER, D., JONES, T. C., VOLLMAR, P. et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature 581 465-469.
[56] XU, R., RAHMANDAD, H., GUPTA, M., DIGENNARO, C., GHAFFARZADEGAN, N., AMINI, H. and JALALI, M. S. (2020). The modest impact of weather and air pollution on COVID-19 transmission. MedRxiv.
[57] YU, X. (2020). Impact of mitigating interventions and temperature on the instantaneous reproduction number in the COVID-19 epidemic among 30 US metropolitan areas. MedRxiv.
[58] ZHANG, J., LITVINOVA, M., WANG, W., WANG, Y., DENG, X., CHEN, X., LI, M., ZHENG, W., YI, L., CHEN, X. et al. (2020). Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study. Lancet Infect. Dis. 20 793-802.
[59] ZHAO, S., LIN, Q., RAN, J., MUSA, S. S., YANG, G., WANG, W., LOU, Y., GAO, D., YANG, L., HE, D. and WANG, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis. 92 214-217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.