Sun, Yifei; He, Xuming; Hu, Jianhua An omnibus test for detection of subgroup treatment effects via data partitioning. (English) Zbl 1498.62257 Ann. Appl. Stat. 16, No. 4, 2266-2278 (2022). Summary: Late-stage clinical trials have been conducted primarily to establish the efficacy of a new treatment in an intended population. A corollary of population heterogeneity in clinical trials is that a treatment might be effective for one or more subgroups, rather than for the whole population of interest. As an example, the phase III clinical trial of panitumumab in metastatic colorectal cancer patients failed to demonstrate its efficacy in the overall population, but a subgroup associated with tumor KRAS status was found to be promising [M. Peeters et al., “Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer”, Am. J. Clinic. Oncol. 28, No. 31, 4706–4713 (2010; doi:10.1200/JCO.2009.27.6055)]. As we search for such subgroups via data partitioning based on a large number of biomarkers, we need to guard against inflated type I error rates due to multiple testing. Commonly-used multiplicity adjustments tend to lose power for the detection of subgroup treatment effects. We develop an effective omnibus test to detect the existence of, at least, one subgroup treatment effect, allowing a large number of possible subgroups to be considered and possibly censored outcomes. Applied to the panitumumab trial data, the proposed test would confirm a significant subgroup treatment effect. Empirical studies also show that the proposed test is applicable to a variety of outcome variables and maintains robust statistical power. Cited in 2 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis Keywords:bootstrap; clinical trials; data partitioning; high-dimensional covariates; subgroup treatment effect × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BEHR, M., ANSARI, M. A., MUNK, A. and HOLMES, C. (2020). Testing for dependence on tree structures. Proc. Natl. Acad. Sci. USA 117 9787-9792. · Zbl 1485.62078 · doi:10.1073/pnas.1912957117 [2] Chernozhukov, V., Chetverikov, D. and Kato, K. (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786-2819. · Zbl 1292.62030 · doi:10.1214/13-AOS1161 [3] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2017). Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45 2309-2352. · Zbl 1377.60040 · doi:10.1214/16-AOP1113 [4] Chernozhukov, V., Chetverikov, D. and Kato, K. (2019). Inference on causal and structural parameters using many moment inequalities. Rev. Econ. Stud. 86 1867-1900. · Zbl 07613855 · doi:10.1093/restud/rdy065 [5] DMITRIENKO, A., MILLEN, B. and LIPKOVICH, I. (2017). Multiplicity considerations in subgroup analysis. Stat. Med. 36 4446-4454. · doi:10.1002/sim.7416 [6] DMITRIENKO, A., LIPKOVICH, I., DANE, A. and MUYSERS, C. (2020). Data-driven and confirmatory subgroup analysis in clinical trials. In Design and Analysis of Subgroups with Biopharmaceutical Applications (N. Ting, J. C. Cappelleri, S. Ho and D. Chen, eds.) 33-91. Springer, Berlin. [7] GEHAN, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52 203-223. · Zbl 0133.41901 · doi:10.1093/biomet/52.1-2.203 [8] GUO, X. and HE, X. (2021). Inference on selected subgroups in clinical trials. J. Amer. Statist. Assoc. 116 1498-1506. · Zbl 1510.62434 · doi:10.1080/01621459.2020.1740096 [9] HUANG, Y. (2013). Fast censored linear regression. Scand. J. Stat. 40 789-806. · Zbl 1283.62141 · doi:10.1111/sjos.12031 [10] JOSHI, N., FINE, J., CHU, R. and IVANOVA, A. (2019). Estimating the subgroup and testing for treatment effect in a post-hoc analysis of a clinical trial with a biomarker. J. Biopharm. Statist. 29 685-695. [11] LEE, J. J. and RUBIN, D. B. (2016). Evaluating the validity of post-hoc subgroup inferences: A case study. Amer. Statist. 70 39-46. · Zbl 07665850 · doi:10.1080/00031305.2015.1093961 [12] LOH, W.-Y. (2009). Improving the precision of classification trees. Ann. Appl. Stat. 3 1710-1737. · Zbl 1184.62109 · doi:10.1214/09-AOAS260 [13] LOH, W.-Y., HE, X. and MAN, M. (2015). A regression tree approach to identifying subgroups with differential treatment effects. Stat. Med. 34 1818-1833. · doi:10.1002/sim.6454 [14] LU, W., GOLDBERG, Y. and FINE, J. P. (2012). On the robustness of the adaptive lasso to model misspecification. Biometrika 99 717-731. · Zbl 1437.62547 · doi:10.1093/biomet/ass027 [15] NAGGARA, O., RAYMOND, J., GUILBERT, F. and ALTMAN, D. G. (2011). The problem of subgroup analyses: An example from a trial on ruptured intracranial aneurysms. Am. J. Neuroradiol. 32 633-636. [16] O’BRIEN, T. R., KUHS, K. A. and PFEIFFER, R. M. (2014). Subgroup differences in response to 8 weeks of ledipasvir/sofosbuvir for chronic hepatitis C. Open Forum Infect. Dis. 1 ofu110. [17] ONDRA, T., DMITRIENKO, A., FRIEDE, T., GRAF, A., MILLER, F., STALLARD, N. and POSCH, M. (2016). Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review. J. Biopharm. Statist. 26 99-119. · doi:10.1080/10543406.2015.1092034 [18] PEETERS, M., PRICE, T., CERVANTES, A., SOBRERO, A., DUCREUX, M., HOTKO, Y., ANDRÉ, T., CHAN, E., LORDICK, F. et al. (2010). Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. Am. J. Clin. Oncol. 28 4706-4713. [19] PEETERS, M., OLINER, K. S., PRICE, T. J., CERVANTES, A., SOBRERO, A. F., DUCREUX, M., HOTKO, Y., ANDRÉ, T., CHAN, E. et al. (2015). Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin. Cancer Res. 21 5469-5479. [20] PEPE, M. S. and FLEMING, T. R. (1991). Weighted Kaplan-Meier statistics: Large sample and optimality considerations. J. Roy. Statist. Soc. Ser. B 53 341-352. · Zbl 0800.62218 [21] SHEN, J. and HE, X. (2015). Inference for subgroup analysis with a structured logistic-normal mixture model. J. Amer. Statist. Assoc. 110 303-312. · Zbl 1373.62078 · doi:10.1080/01621459.2014.894763 [22] SHEN, J. and QU, A. (2020). Subgroup analysis based on structured mixed-effects models for longitudinal data. J. Biopharm. Statist. 30 607-622. [23] SIES, A., DEMYTTENAERE, K. and MECHELEN, I. V. (2019). Studying treatment-effect heterogeneity in precision medicine through induced subgroups. J. Biopharm. Statist. 29 491-507. [24] SONG, R., LU, W., MA, S. and JENG, X. J. (2014). Censored rank independence screening for high-dimensional survival data. Biometrika 101 799-814. · Zbl 1306.62207 · doi:10.1093/biomet/asu047 [25] SUN, Y., HE, X. and HU, J. (2022). Supplement to “An omnibus test for detection of subgroup treatment effects via data partitioning.” https://doi.org/10.1214/21-AOAS1589SUPP · Zbl 1498.62257 [26] TSIATIS, A. A. (1990). Estimating regression parameters using linear rank tests for censored data. Ann. Statist. 18 354-372. · Zbl 0701.62051 · doi:10.1214/aos/1176347504 [27] Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. J. Amer. Statist. Assoc. 113 1228-1242. · Zbl 1402.62056 · doi:10.1080/01621459.2017.1319839 [28] Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429 · Zbl 1171.62326 · doi:10.1198/016214506000000735 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.