Ye, Ting; Small, Dylan S.; Rosenbaum, Paul R. Dimensions, power and factors in an observational study of behavioral problems after physical abuse of children. (English) Zbl 1498.62271 Ann. Appl. Stat. 16, No. 4, 2732-2754 (2022). Summary: Many observational studies assess the impact of a treatment on an outcome that has several dimensions. In the observational study that we discuss, physical abuse of children may affect the degree to which the child exhibits depression, withdrawal or aggression. A treatment may affect all, some or none of these dimensions. In addition to the scientific interest in learning the effect on each dimension, it is also known that an appropriate combination of dimensions may increase power, efficiency and insensitivity to unmeasured biases; however, finding this appropriate combination requires corrections for multiple testing that erode power. We explore this trade-off by developing a new formula for the power of a sensitivity analysis in a simple situation with several dimensions. The methodology is applied to study the effects of physical abuse in early childhood and its possible effects on several dimensions of subsequent behavioral problems. Also, a general method is proposed for converting any signed rank test for matched pairs into an analogous test for matching each treated individual to several controls, and the performance of this extension is examined. The proposed method aids in studying the relative magnitude of the effect on different dimensions. A second evidence factor considers the dose or intensity of physical abuse. Cited in 2 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 62D20 Causal inference from observational studies Keywords:causal inference; coherence among multiple outcomes; design sensitivity; evidence factors; observational study; power of a sensitivity analysis; Scheffé correction; sensitivity analysis Software:evidenceFactors; dstat × Cite Format Result Cite Review PDF Full Text: DOI References: [1] ACHENBACH, T. M. and RESCORLA, L. A. (2000). Manual for the ASEBA Preschool Forms and Profiles. Univ. Vermont, Research Center for Children, Youth and Families, Burlington, VT. [2] AMMERMAN, R. T., CASSISI, J. E., HERSEN, M. and VAN HASSELT, V. B. (1986). Consequences of physical abuse and neglect in children. Clinical Psychol. Rev. 6 291-310. [3] CHOI, J. K., WANG, D. and JACKSON, A. P. (2019). Adverse experiences in early childhood and their longitudinal impact on later behavioral problems of children living in poverty. Child Abuse Negl. 98 104-181. [4] DURRANT, J. and ENSOM, R. (2012). Physical punishment of children: Lessons from 20 years of research. CMAJ, Can. Med. Assoc. J. 184 1373-1377. [5] GASTWIRTH, J. L., KRIEGER, A. M. and ROSENBAUM, P. R. (2000). Asymptotic separability in sensitivity analysis. J. R. Stat. Soc. Ser. B. Stat. Methodol. 62 545-555. · Zbl 0953.62041 · doi:10.1111/1467-9868.00249 [6] HETTMANSPERGER, T. P. and MCKEAN, J. W. (2011). Robust Nonparametric Statistical Methods, 2nd ed. Monographs on Statistics and Applied Probability 119. CRC Press, Boca Raton, FL. · Zbl 1263.62048 [7] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 65-70. · Zbl 0402.62058 [8] HSU, J. Y., SMALL, D. S. and ROSENBAUM, P. R. (2013). Effect modification and design sensitivity in observational studies. J. Amer. Statist. Assoc. 108 135-148. · Zbl 06158331 · doi:10.1080/01621459.2012.742018 [9] HUNT, T. K. A., SLACK, K. S. and BERGER, L. M. (2017). Adverse childhood experiences and behavioral problems in middle childhood. Child Abuse Negl. 67 391-402. · doi:10.1016/j.chiabu.2016.11.005 [10] KARMAKAR, B., FRENCH, B. and SMALL, D. S. (2019). Integrating the evidence from evidence factors in observational studies. Biometrika 106 353-367. · Zbl 1435.62390 · doi:10.1093/biomet/asz003 [11] KARMAKAR, B., SMALL, D. S. and ROSENBAUM, P. R. (2020). Using evidence factors to clarify exposure biomarkers. Am. J. Epidemiol. 189 243-249. [12] LEE, S. J., ALTSCHUL, I. and GERSHOFF, E. T. (2015). Wait until your father gets home? Mother’s and fathers’ spanking and development of child aggression. Child. Youth Serv. Rev. 52 158-166. · doi:10.1016/j.childyouth.2014.11.006 [13] LEE, K., SMALL, D. S. and ROSENBAUM, P. R. (2018). A powerful approach to the study of moderate effect modification in observational studies. Biometrics 74 1161-1170. [14] LEHMANN, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day Series in Probability and Statistics. Holden-Day, San Francisco, CA. · Zbl 0354.62038 [15] MACKENZIE, M., NICKLAS, E., BROOKS-GUNN, J. and WALDFOGEL, J. (2015). Spanking and children’s externalizing behavior across the first decade of life: Evidence for transactional processes. Journal of Youth and Adolescence 44 658-669. [16] MCKILLIP, J. (1992). Research without control groups: A control construct design. In Methodological Issues in Applied Social Psychology (F. B. Bryant et al., eds.) 159-175. Plenum, NY. [17] NEYMAN, J. (1923, 1990). On the application of probability theory to agricultural experiments. Statist. Sci. 465-472. · Zbl 0955.01560 [18] NOETHER, G. E. (1967). Elements of Nonparametric Statistics. Wiley, New York. · Zbl 0153.48002 [19] ORNDUFF, S. R. (2000). Childhood maltreatment and malevolence: Quantitative research findings. Clin Psychol Rev 20 997-1018. · doi:10.1016/s0272-7358(99)00021-5 [20] OSTERMAN, K., BJÖRKQVIST, K. and WAHLBECK, K. (2014). Twenty-eight years after the complete ban on the physical punishment of children in Finland: Trends and psychosocial concomitants. Aggressive Behavior 40 568-581. [21] PRATT, J. W. and GIBBONS, J. D. (2012). Concepts of Nonparametric Theory. Springer Series in Statistics. Springer, New York. [22] RAO, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed. Wiley Series in Probability and Mathematical Statistics. Wiley, New York. · Zbl 0256.62002 [23] ROSENBAUM, P. R. (1997). Signed rank statistics for coherent predictions. Biometrics 556-566. · Zbl 0881.62120 [24] Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer Series in Statistics. Springer, New York. · Zbl 0985.62091 · doi:10.1007/978-1-4757-3692-2 [25] ROSENBAUM, P. R. (2004). Design sensitivity in observational studies. Biometrika 91 153-164. · Zbl 1132.62363 · doi:10.1093/biomet/91.1.153 [26] ROSENBAUM, P. R. (2010). Evidence factors in observational studies. Biometrika 97 333-345. · Zbl 1205.62179 · doi:10.1093/biomet/asq019 [27] ROSENBAUM, P. R. (2014). Weighted \(M\)-statistics with superior design sensitivity in matched observational studies with multiple controls. J. Amer. Statist. Assoc. 109 1145-1158. · Zbl 1368.62290 · doi:10.1080/01621459.2013.879261 [28] ROSENBAUM, P. R. (2016a). Using Scheffé projections for multiple outcomes in an observational study of smoking and periodontal disease. Ann. Appl. Stat. 10 1447-1471. · Zbl 1391.62244 · doi:10.1214/16-AOAS942 [29] ROSENBAUM, P. R. (2016b). The cross-cut statistic and its sensitivity to bias in observational studies with ordered doses of treatment. Biometrics 72 175-183. · Zbl 1393.62095 · doi:10.1111/biom.12373 [30] ROSENBAUM, P. R. (2017). The general structure of evidence factors in observational studies. Statist. Sci. 32 514-530. · Zbl 1384.62014 · doi:10.1214/17-STS621 [31] ROSENBAUM, P. R. (2020a). Combining planned and discovered comparisons in observational studies. Biostatistics 21 384-399. · doi:10.1093/biostatistics/kxy055 [32] ROSENBAUM, P. R. (2020b). Design of Observational Studies, 2nd ed. Springer Series in Statistics. Springer, New York. · Zbl 1308.62005 · doi:10.1007/978-1-4419-1213-8 [33] ROSENBAUM, P. R. (2020c). A conditional test with demonstrated insensitivity to unmeasured bias in matched observational studies. Biometrika 107 827-840. · Zbl 1457.62057 · doi:10.1093/biomet/asaa032 [34] ROSENBAUM, P. R. (2021). Replication and Evidence Factors in Observational Studies. CRC Press/CRC, NY. · Zbl 1466.62010 [35] Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66 688-701. [36] SCHEFFÉ, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika 40 87-104. · Zbl 0052.15202 · doi:10.2307/2333100 [37] SEN, P. K. (1968). On a further robustness property of the test and estimator based on Wilcoxon’s signed rank statistic. Ann. Math. Stat. 39 282-285. · Zbl 0162.21904 · doi:10.1214/aoms/1177698535 [38] SILBER, J. H., ROSENBAUM, P. R., MCHUGH, M. D., LUDWIG, J. M., SMITH, H. L., NIKNAM, B. A., EVEN-SHOSHAN, O., FLEISHER, L. A., KELZ, R. R. et al. (2016). Comparison of the value of nursing work environments in hospitals across different levels of patient risk. JAMA Surg. 151 527-536. [39] TCHETGEN TCHETGEN, E. J. (2013). The control outcome calibration approach for causal inference with unobserved confounding. Am. J. Epidemiol. 179 633-640. [40] WARD, K. P., LEE, S., PACE, G., GROGAN-KAYLOR, A. and MA, J. (2020). Attachment style and the association of spanking and child externalizing behavior. Academic Pediatrics 20 501-507. [41] YE, T., SMALL, D. S. and ROSENBAUM, P. S. (2022). Supplement to “Dimensions, power and factors in an observational study of behavioral problems after physical abuse of children.” https://doi.org/10.1214/22-AOAS1611SUPPA, https://doi.org/10.1214/22-AOAS1611SUPPB · Zbl 1498.62271 [42] ZAYKIN, D. V., ZHIVOTOVSKY, L. A., WESTFALL, P. H. and WEIR, B. S. (2002). Truncated product method for combining P-values. Genet. Epidemiol. 22 170-185. [43] ZOLOTOR, A. J., THEODORE, A. D., CHANG, J. J., BERKOFF, M. C. and RUNYAN, D. K. (2008). Speak softly—and forget the stick: Corporal punishment and child physical abuse. Am. J. Prev. Med. 35 364-369 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.