Baugh, Samuel; McKinnon, Karen Hierarchical Bayesian modeling of ocean heat content and its uncertainty. (English) Zbl 1498.62281 Ann. Appl. Stat. 16, No. 4, 2603-2625 (2022). Summary: The accurate quantification of changes in the heat content of the world’s oceans is crucial for our understanding of the effects of increasing greenhouse gas concentrations. The Argo program, consisting of Lagrangian floats that measure vertical temperature profiles throughout the global ocean, has provided a wealth of data from which to estimate ocean heat content. However, creating a globally consistent statistical model for ocean heat content remains challenging due to the need for a globally valid covariance model that can capture complex nonstationarity. In this paper, we develop a hierarchical Bayesian Gaussian process model that uses kernel convolutions with cylindrical distances to allow for spatial nonstationarity in all model parameters while using a Vecchia process to remain computationally feasible for large spatial datasets. Our approach can produce valid credible intervals for globally integrated quantities that would not be possible using previous approaches. These advantages are demonstrated through the application of the model to Argo data, yielding credible intervals for the spatially varying trend in ocean heat content that accounts for both the uncertainty induced from interpolation and from estimating the mean field and other parameters. Through cross-validation, we show that our model outperforms an out-of-the-box approach as well as other simpler models. The code for performing this analysis is provided as the R package BayesianOHC. MSC: 62P12 Applications of statistics to environmental and related topics 62F15 Bayesian inference 62H11 Directional data; spatial statistics 62-08 Computational methods for problems pertaining to statistics Keywords:hierarchical Bayesian modeling; nonstationary spatial modeling; ocean heat content Software:GpGp; BayesNSGP; GPvecchia; BayesianOHC × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] BALMASEDA, M. A., TRENBERTH, K. E. and KÄLLÉN, E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40 1754-1759. [2] BAUGH, S. and MCKINNON, K. (2022). Supplement to “Hierarchical Bayesian modeling of ocean heat content and its uncertainty.” https://doi.org/10.1214/22-AOAS1605SUPPA, https://doi.org/10.1214/22-AOAS1605SUPPB [3] CHENG, L. and ZHU, J. (2016). Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate 29 5393-5416. [4] CHENG, L., TRENBERTH, K. E., FASULLO, J., BOYER, T., ABRAHAM, J. and ZHU, J. (2017). Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3. [5] COLLING, A. (2001). Ocean Circulation 3. Butterworth-Heinemann Boston. [6] Datta, A., Banerjee, S., Finley, A. O. and Gelfand, A. E. (2016). Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. J. Amer. Statist. Assoc. 111 800-812. · doi:10.1080/01621459.2015.1044091 [7] DIJKSTRA, H. A. (2008). Dynamical Oceanography. Springer, Berlin. · Zbl 1214.86003 [8] GNEITING, T., RAFTERY, A. E., WESTVELD III, A. H. and GOLDMAN, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133 1098-1118. [9] GOURETSKI, V. (2018). World ocean circulation experiment—Argo global hydrographic climatology. Ocean Science 14 1127-1146. [10] Guinness, J. (2018). Permutation and grouping methods for sharpening Gaussian process approximations. Technometrics 60 415-429. · doi:10.1080/00401706.2018.1437476 [11] GUINNESS, J. (2021). Gaussian process learning via Fisher scoring of Vecchia’s approximation. Stat. Comput. 31 Paper No. 25. · Zbl 1475.62033 · doi:10.1007/s11222-021-09999-1 [12] GUINNESS, J. and GPGP, M. K. (2018). Fast Gaussian process computation using Vecchia’s approximation. R package version 0.1. 0. [13] Heidelberger, P. and Welch, P. D. (1981). A spectral method for confidence interval generation and run length control in simulations. Commun. ACM 24 233-245. · doi:10.1145/358598.358630 [14] Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5 173-190. [15] HITCZENKO, M. and STEIN, M. L. (2012). Some theory for anisotropic processes on the sphere. Stat. Methodol. 9 211-227. · Zbl 1248.60040 · doi:10.1016/j.stamet.2011.01.010 [16] ISHII, M., FUKUDA, Y., HIRAHARA, S., YASUI, S., SUZUKI, T. and SATO, K. (2017). Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sola 13 163-167. [17] JEONG, J. and JUN, M. (2015). A class of Matérn-like covariance functions for smooth processes on a sphere. Spat. Stat. 11 1-18. · doi:10.1016/j.spasta.2014.11.001 [18] JEONG, J., JUN, M. and GENTON, M. G. (2017). Spherical process models for global spatial statistics. Statist. Sci. 32 501-513. · Zbl 1381.62091 · doi:10.1214/17-STS620 [19] KATZFUSS, M. (2013). Bayesian nonstationary spatial modeling for very large datasets. Environmetrics 24 189-200. · Zbl 1525.62153 · doi:10.1002/env.2200 [20] Katzfuss, M. and Guinness, J. (2021). A general framework for Vecchia approximations of Gaussian processes. Statist. Sci. 36 124-141. · Zbl 07368223 · doi:10.1214/19-STS755 [21] KATZFUSS, M., JUREK, M., ZILBER, D., GONG, W., GUINNESS, J., ZHANG, J. and GPVECCHIA, F. S. (2020a). Fast Gaussian-process inference using Vecchia approximations. R package version 0.1. [22] KATZFUSS, M., GUINNESS, J., GONG, W. and ZILBER, D. (2020b). Vecchia approximations of Gaussian-process predictions. J. Agric. Biol. Environ. Stat. 25 383-414. · doi:10.1007/s13253-020-00401-7 [23] KUUSELA, M. and STEIN, M. L. (2018). Locally stationary spatio-temporal interpolation of Argo profiling float data. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 474 20180400. [24] LEVITUS, S., ANTONOV, J. I., BOYER, T. P., BARANOVA, O. K., GARCIA, H. E., LOCARNINI, R. A., MISHONOV, A. V., REAGAN, J. R., SEIDOV, D. et al. (2012). World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010. Geophysical Research Letters 39 L10603. [25] LI, Y. and ZHU, Z. (2016). Modeling nonstationary covariance function with convolution on sphere. Comput. Statist. Data Anal. 104 233-246. · Zbl 1466.62148 · doi:10.1016/j.csda.2016.07.001 [26] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x [27] MEYSSIGNAC, B., BOYER, T., ZHAO, Z., HAKUBA, M. Z., LANDERER, F. W., STAMMER, D., KÖHL, A., KATO, S., L’ECUYER, T. et al. (2019). Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. 6 432. [28] Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17 483-506. · doi:10.1002/env.785 [29] PALMER, M. D., ROBERTS, C. D., BALMASEDA, M. A. et al. (2017). Ocean heat content variability and change in an ensemble of ocean reanalyses. Clim. Dyn. 49 909-930. [30] RISER, S. C., FREELAND, H. J., ROEMMICH, D., WIJFFELS, S., TROISI, A., BELBÉOCH, M., GILBERT, D., XU, J., POULIQUEN, S. et al. (2016). Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6 145-153. · doi:10.1038/nclimate2872 [31] RISSER, M. D. (2016). Nonstationary spatial modeling, with emphasis on process convolution and covariate-driven approaches. ArXiv preprint. Available at arXiv:1610.02447. [32] RISSER, M. (2020). Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. Available at arXiv:2005.03658. [33] RISSER, M. D. and TUREK, D. (2020). Bayesian inference for high-dimensional nonstationary Gaussian processes. J. Stat. Comput. Simul. 90 2902-2928. · Zbl 07480230 [34] ROBERTS, G. O. and ROSENTHAL, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graph. Statist. 18 349-367. · doi:10.1198/jcgs.2009.06134 [35] ROEMMICH, D. and GILSON, J. (2009). The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Progress in Oceanography 82 81-100. [36] SAMPSON, P. D. and GUTTORP, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108-119. [37] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, New York. · Zbl 0924.62100 · doi:10.1007/978-1-4612-1494-6 [38] TRENBERTH, K. E., FASULLO, J. T. and BALMASEDA, M. A. (2014). Earth’s energy imbalance. J. Climate 27 3129-3144. [39] TUREK, D. and RISSER, M. D. (2019). BayesNSGP: Bayesian analysis of non-stationary Gaussian process models. Available at https://CRAN.R-project.org/package=BayesNSGP. [40] Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. J. Roy. Statist. Soc. Ser. B 50 297-312. [41] VON SCHUCKMANN, K. and LE TRAON, P.-Y. (2011). Schuckmann and Pierre-Yves Le Traon. How well can we derive global ocean indicators from Argo data? Ocean Science 7 783-791 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.