×

High-resolution Bayesian mapping of landslide hazard with unobserved trigger event. (English) Zbl 1498.62289

Summary: Statistical models for landslide hazard enable mapping of risk factors and landslide occurrence intensity by using geomorphological covariates available at high spatial resolution. However, the spatial distribution of the triggering event (e.g., precipitation or earthquakes) is often not directly observed. In this paper we develop Bayesian spatial hierarchical models for point patterns of landslide occurrences using different types of log-Gaussian Cox processes. Starting from a competitive baseline model that captures the unobserved precipitation trigger through a spatial random effect at slope unit resolution, we explore novel complex model structures that take clusters of events arising at small spatial scales into account as well as nonlinear or spatially-varying covariate effects. For a 2009 event of around 5000 precipitation-triggered landslides in Sicily, Italy, we show how to fit our proposed models efficiently, using the integrated nested Laplace approximation (INLA), and rigorously compare the performance of our models both from a statistical and applied perspective. In this context we argue that model comparison should not be based on a single criterion and that different models of various complexity may provide insights into complementary aspects of the same applied problem. In our application our models are found to have mostly the same spatial predictive performance, implying that key to successful prediction is the inclusion of a slope-unit resolved random effect capturing the precipitation trigger. Interestingly, a parsimonious formulation of space-varying slope effects reflects a physical interpretation of the precipitation trigger: in subareas with weak trigger, the slope steepness is shown to be mostly irrelevant.

MSC:

62P12 Applications of statistics to environmental and related topics
62F15 Bayesian inference
62M30 Inference from spatial processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ALVIOLI, M., MARCHESINI, I., REICHENBACH, P., ROSSI, M., ARDIZZONE, F., FIORUCCI, F. and GUZZETTI, F. (2016). Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev. 9 3975-3991.
[2] AMATO, G., EISANK, C., CASTRO-CAMILO, D. and LOMBARDO, L. (2019). Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the Alpine environment. Eng. Geol. 260 105237.
[3] ARNONE, E., FRANCIPANE, A., SCARBACI, A., PUGLISI, C. and NOTO, L. (2016). Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environ. Model. Softw. 84 467-481.
[4] ATKINSON, P. M. and MASSARI, R. (1998). Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput. Geosci. 24 373-385.
[5] AYALEW, L. and YAMAGISHI, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65 15-31.
[6] BESAG, J. (1975). Statistical analysis of non-lattice data. J. Roy. Stat. Soc. (Ser. D) 179-195.
[7] BEVEN, K. and KIRKBY, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24 43-69.
[8] BOUT, B., LOMBARDO, L., VAN WESTEN, C. J. and JETTEN, V. G. (2018). Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures. Environ. Model. Softw. 105 1-16.
[9] CAMA, M., LOMBARDO, L., CONOSCENTI, C., AGNESI, V. and ROTIGLIANO, E. (2015). Predicting storm-triggered debris flow events: Application to the 2009 Ionian Peloritan disaster (Sicily, Italy). Nat. Hazards Earth Syst. Sci. 15 1785-1806.
[10] CAMA, M., CONOSCENTI, C., LOMBARDO, L. and ROTIGLIANO, E. (2016). Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: A test in the Giampilieri catchment (Sicily, Italy). Environmental Earth Sciences 75 1-21.
[11] CARRARA, A., CARDINALI, M., GUZZETTI, F. and REICHENBACH, P. (1995). GIS technology in mapping landslide hazard. In Geographical Information Systems in Assessing Natural Hazards 135-175. Springer, Berlin.
[12] CASTRO CAMILO, D., LOMBARDO, L., MAI, P. M., DOU, J. and HUSER, R. (2017). Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized generalized linear model. Environ. Model. Softw. 97 145-156.
[13] COROMINAS, J., VAN WESTEN, C., FRATTINI, P., CASCINI, L., MALET, J.-P., FOTOPOULOU, S., CATANI, F., VAN DEN EECKHAUT, M., MAVROULI, O. et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment 73 209-263.
[14] FAWCETT, T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett. 27 861-874.
[15] GAMERMAN, D., MOREIRA, A. R. B. and RUE, H. (2003). Space-varying regression models: Specifications and simulation. Comput. Statist. Data Anal. 42 513-533. · Zbl 1429.62428
[16] Gelfand, A. E., Kim, H.-J., Sirmans, C. F. and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387-396. · Zbl 1041.62041
[17] Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Stat. Comput. 24 997-1016. · Zbl 1332.62090
[18] Gneiting, T. and Katzfuss, M. (2014). Probabilistic forecasting. Annu. Rev. Stat. Appl. 1 125-151.
[19] GOETZ, J., BRENNING, A., PETSCHKO, H. and LEOPOLD, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 81 1-11.
[20] GUZZETTI, F. and REICHENBACH, P. (1994). Towards a definition of topographic divisions for Italy. Geomorphology 11 57-74.
[21] HEERDEGEN, R. G. and BERAN, M. A. (1982). Quantifying source areas through land surface curvature and shape. J. Hydrol. 57 359-373.
[22] HUNGR, O., LEROUEIL, S. and PICARELLI, L. (2014). The varnes classification of landslide types, an update. Landslides 11 167-194.
[23] ILLIAN, J. B., SØRBYE, S. H. and RUE, H. (2012). A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA). Ann. Appl. Stat. 6 1499-1530. · Zbl 1257.62093
[24] KOH, J., PIMONT, F., DUPUY, J.-L. and OPITZ, T. (2021). Spatiotemporal wildfire modeling through point processes with moderate and extreme marks. ArXiv Preprint. Available at arXiv:2105.08004.
[25] KRAINSKI, E. T., GÓMEZ-RUBIO, V., BAKKA, H., LENZI, A., CASTRO-CAMILO, D., SIMPSON, D., LINDGREN, F. and RUE, H. (2018). Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. CRC Press/CRC, New York. · Zbl 1418.62011
[26] LEININGER, T. J. and GELFAND, A. E. (2017). Bayesian inference and model assessment for spatial point patterns using posterior predictive samples. Bayesian Anal. 12 1-30. · Zbl 1384.62091
[27] LOMBARDO, L., OPITZ, T. and HUSER, R. (2018). Point process-based modeling of multiple debris flow landslides using INLA: An application to the 2009 Messina disaster. Stoch. Environ. Res. Risk Assess. 32 2179-2198.
[28] LOMBARDO, L., OPITZ, T. and HUSER, R. (2019). Numerical recipes for landslide spatial prediction using R-INLA: A step-by-step tutorial. In Spatial Modeling in GIS and R for Earth and Environmental Sciences (H. R. Pourghasemi and C. Gokceoglu, eds.) 55-83. Elsevier, Amsterdam.
[29] LOMBARDO, L., CAMA, M., MAERKER, M. and ROTIGLIANO, E. (2014). A test of transferability for landslides susceptibility models under extreme climatic events: Application to the Messina 2009 disaster. Natural Hazards 74 1951-1989.
[30] LOMBARDO, L., FUBELLI, G., AMATO, G. and BONASERA, M. (2016a). Presence-only approach to assess landslide triggering-thickness susceptibility: A test for the Mili catchment (North-Eastern Sicily, Italy). Natural Hazards 84 565-588.
[31] LOMBARDO, L., BACHOFER, F., CAMA, M., MÄRKER, M. and ROTIGLIANO, E. (2016b). Exploiting maximum entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (North-Eastern Sicily, Italy). Earth Surf. Process. Landf. 41 1776-1789.
[32] LOMBARDO, L., BAKKA, H., TANYAS, H., VAN WESTEN, C., MAI, P. M. and HUSER, R. (2019). Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. J. Geophys. Res., Earth Surf. 124 1958-1980.
[33] LOMBARDO, L., OPITZ, T., ARDIZZONE, F., GUZZETTI, F. and HUSER, R. (2020). Space-time landslide predictive modelling. Earth-Sci. Rev. 103318.
[34] MØLLER, J., SYVERSVEEN, A. R. and WAAGEPETERSEN, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451-482. · Zbl 0931.60038
[35] MOORE, I. D., GRAYSON, R. and LADSON, A. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 5 3-30.
[36] MORAGA, P. (2019). Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. CRC Press/CRC Biostatistics Series, Boca Raton, FL.
[37] MURDOCH, W. J., SINGH, C., KUMBIER, K., ABBASI-ASL, R. and YU, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 116 22071-22080. · Zbl 1431.62266
[38] OPITZ, T. (2017). Latent Gaussian modeling and INLA: A review with focus on space-time applications. J. French Stat. Soc. 158 62-85. · Zbl 1378.62095
[39] Opitz, T., Huser, R., Bakka, H. and Rue, H. (2018). INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles. Extremes 21 441-462. · Zbl 1407.62167
[40] OPITZ, T., BAKKA, H., HUSER, R. and LOMBARDO, L. (2022). Supplement to “High-resolution Bayesian mapping of landslide hazard with unobserved trigger event.” https://doi.org/10.1214/21-AOAS1561SUPP
[41] REICHENBACH, P., ROSSI, M., MALAMUD, B. D., MIHIR, M. and GUZZETTI, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 180 60-91.
[42] ROSSI, M., GUZZETTI, F., REICHENBACH, P., MONDINI, A. C. and PERUCCACCI, S. (2010). Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114 129-142.
[43] ROUSE JR., J., HAAS, R., SCHELL, J. and DEERING, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS.
[44] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. CRC Press/CRC, Boca Raton, FL. · Zbl 1093.60003
[45] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 319-392. · Zbl 1248.62156
[46] RUE, H., RIEBLER, A., SØRBYE, S. H., ILLIAN, J. B., SIMPSON, D. P. and LINDGREN, F. K. (2016). Bayesian computing with INLA: A review. Annu. Rev. Stat. Appl. 1.
[47] Simpson, D., Rue, H., Riebler, A., Martins, T. G. and SØrbye, S. H. (2017). Penalising model component complexity: A principled, practical approach to constructing priors. Statist. Sci. 32 1-28. · Zbl 1442.62060
[48] SØRBYE, S. H. and RUE, H. (2014). Scaling intrinsic Gaussian Markov random field priors in spatial modelling. Spat. Stat. 8 39-51.
[49] TENG, M., NATHOO, F. and JOHNSON, T. D. (2017). Bayesian computation for Log-Gaussian Cox processes: A comparative analysis of methods. J. Stat. Comput. Simul. 87 2227-2252. · Zbl 07192060
[50] TIERNEY, L. and KADANE, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86. · Zbl 0587.62067
[51] VAN DEN BOUT, B., LOMBARDO, L., CHIYANG, M., VAN WESTEN, C. and JETTEN, V. (2021). Physically-based catchment-scale prediction of slope failure volume and geometry. Eng. Geol. 105942.
[52] VARNES, D. J. (1958). Landslide types and processes. Landslides and Engineering Practice 24 20-47.
[53] VRANCKX, M., NEYENS, T. and FAES, C. (2019). Comparison of different software implementations for spatial disease mapping. Spat. Spatiotemporal. Epidemiol. 31 100302.
[54] WILSON, J. P. and GALLANT, J. C. (2000). Digital terrain analysis. Terrain Analysis: Principles and Applications 6 1-27.
[55] ZEVENBERGEN, L. W. and THORNE, C. R. (1987). Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 12 47-56
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.