×

Geometry of information structures, strategic measures and associated stochastic control topologies. (English) Zbl 1498.93785

Summary: In many areas of applied mathematics, decentralization of information is a ubiquitous attribute affecting how to approach a stochastic optimization, decision and estimation, or control problem. In this review article, we present a general formulation of information structures under a probability theoretic and geometric formulation. We define information structures, place various topologies on them, and study closedness, compactness and convexity properties on the strategic measures induced by information structures and decentralized control/decision policies under varying degrees of relaxations with regard to access to private or common randomness. Ultimately, we present existence and tight approximation results for optimal decision/control policies. We discuss various lower bounding techniques, through relaxations and convex programs ranging from classically realizable and classically non-realizable (such as quantum theoretic and non-signaling) relaxations. For each of these, we establish closedness and convexity properties and also a hierarchy of correlation structures. As a further theme, we review and introduce various topologies on decision/control strategies defined independent of information structures, but for which information structures determine whether the topologies entail utility in arriving at existence, compactness, convexification or approximation results. These approaches, which we term as the strategic measures approach and the control topology approach, lead to complementary results on existence, approximations and upper and lower bounds in optimal decentralized stochastic decision, estimation, and control problems.

MSC:

93E20 Optimal stochastic control
93A14 Decentralized systems
60B10 Convergence of probability measures
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory

References:

[1] M. AICARDI, F. DAVOLI, AND R. MINCIARDI, Decentralized optimal control of Markov chains with a common past information set, IEEE Transactions on Automatic Control, 32 (1987), pp. 1028-1031. · Zbl 0625.93077
[2] D. J. ALDOUS, Weak convergence and the general theory of processes, Editeur inconnu, 1981.
[3] C. ALIPRANTIS AND K. BORDER, Infinite Dimensional Analysis, Berlin, Springer, 3rd ed., 2006. · Zbl 1156.46001
[4] V. ANANTHARAM AND V. S. BORKAR, Common randomness and distributed control: A counterexample, Systems and control letters, 56 (2007), pp. 568-572. · Zbl 1118.93053
[5] M. ANDERSLAND AND D. TENEKETZIS, Information structures, causality, and non-sequential stochastic control, I: design-independent properties, SIAM J. Control and Optimization, 30 (1992), pp. 1447-1475. · Zbl 0770.93085
[6] M. ANDERSLAND AND D. TENEKETZIS, Information structures, causality, and non-sequential stochastic control, II: design-dependent properties, SIAM J. Control and Optimization, 32 (1994), pp. 1726-1751. · Zbl 0823.93057
[7] J. ARABNEYDI AND A. MAHAJAN, Team-optimal solution of finite number of mean-field coupled LQG subsystems, in IEEE 54th Annual Conference on Decision and Control (CDC), 2015, pp. 5308-5313.
[8] A. ARAPOSTATHIS, A. BISWAS, AND J. CARROLL, On solutions of mean field games with ergodic cost, Journal de Mathématiques Pures et Appliquées, 107 (2017), pp. 205-251. · Zbl 1406.91062
[9] A. ARAPOSTATHIS, V. S. BORKAR, AND M. K. GHOSH, Ergodic control of diffusion processes, vol. 143, Cambridge University Press, 2012. · Zbl 1236.93137
[10] A. ASPECT, Proposed experiment to test the nonseparability of quantum mechanics, Phys. Rev. D, 14 (1976), pp. 1944-1951.
[11] M. ATHANS, Survey of decentralized control methods, Washington D.C, 1974, 3rd NBER/FRB Workshop on Stochastic Control.
[12] V. AULETTA, D. FERRAIOLI, A. RAI, G. SCARPA, AND A. WINTER, Belief-invariant equilibria in games with incomplete information. arXiv:1605.07896, 2016. · Zbl 1518.91023
[13] R. J. AUMANN, Correlated equilibrium as an expression of bayesian rationality, Econometrica: Journal of the Econometric Society, (1987), pp. 1-18. · Zbl 0633.90094
[14] J. BACKHOFF-VERAGUAS, D. BARTL, M. BEIGLBÖCK, AND M. EDER, All adapted topologies are equal, arXiv preprint arXiv:1905.00368, (2019). · Zbl 1476.60079
[15] J. BACKHOFF-VERAGUAS, D. BARTL, M. BEIGLBÖCK, AND M. EDER, Adapted wasserstein distances and stability in mathematical finance, Finance and Stochastics, 24 (2020), pp. 601-632. · Zbl 1440.91036
[16] E. J. BALDER, On ws-convergence of product measures, Mathematics of Operations Research, 26 (2001), pp. 494-518. · Zbl 1073.60500
[17] R. BANSAL AND T. BASAR, Stochastic teams with nonclassical information revisited: When is an affine law optimal?, IEEE Transactions on Automatic Control, 32 (1987), pp. 554-559. · Zbl 0633.93061
[18] J. S. BARAS, Noncommutative probability models in quantum communication and multi-agent stochastic control, Richerche di Automatica, 55 (1979), pp. 217-264.
[19] J. S. BARAS, Multi-agent stochastic control: Models inspired from quantum physics, Saint Petersburg, Russia, 2003, International Conference, Physics and Control (PhysCon), pp. 747-758.
[20] M. BARBIE AND A. GUPTA, The topology of information on the space of probability measures over polish spaces, Journal of Mathematical Economics, 52 (2014), pp. 98-111. · Zbl 1300.60016
[21] J. BARRETT, N. LINDEN, S. MASSAR, S. PIRONIO, S. POPESCU, AND D. ROBERTS, Nonlocal correlations as an information-theoretic resource, Phys. Rev. A, 71 (2005), p. 022101.
[22] A. BARVINOK, A Course in Convexity, American Mathematical Society, 54 of Graduate Studies in Mathematics. Providence, RI, 2002. · Zbl 1014.52001
[23] E. BAYRAKTAR, Y. Y. DOLINSKY, AND J. GUO, Continuity of utility maximization under weak convergence, Mathematics and Financial Economics, (2020), pp. 1-33.
[24] M. BEIGLBÖCK AND D. LACKER, Denseness of adapted processes among causal couplings, arXiv, (2018), pp. arXiv-1805.
[25] J. S. BELL, On the einstein podolsky rosen paradox, Physics Physique Fizika, 1 (1964), pp. 195-200.
[26] V. E. BENEŠ, Existence of optimal stochastic control laws, SIAM Journal on Control, 9 (1971), pp. 446-472. · Zbl 0203.47301
[27] P. BILLINGSLEY, Convergence of probability measures, New York: Wiley, 2nd ed., 1999. · Zbl 0944.60003
[28] J.-M. BISMUT, Partially observed diffusions and their control, SIAM Journal on Control and Optimization, 20 (1982), pp. 302-309. · Zbl 0486.93076
[29] A. BISWAS, Mean field games with ergodic cost for discrete time markov processes, arXiv preprint arXiv:1510.08968, (2015).
[30] D. BLACKWELL, Memoryless strategies in finite-stage dynamic programming, Annals of Mathematical Statistics, 35 (1964), pp. 863-865. · Zbl 0127.36406
[31] D. BLACKWELL, The stochastic processes of Borel gambling and dynamic programming, Annals of Statistics, (1976), pp. 370-374. · Zbl 0331.93055
[32] D. BLACKWELL AND C. RYLL-NADRZEWSKI, Non-existence of everywhere proper conditional distributions, Annals of Mathematical Statistics, 34 (1963), pp. 223-225. · Zbl 0122.13202
[33] V. S. BORKAR, The probabilistic structure of controlled diffusion processes, Acta Applicandae Mathematica, 11 (1988), pp. 19-48. · Zbl 0635.93079
[34] V. S. BORKAR, A topology for markov controls, Applied Mathematics and Optimization, 20 (1989), pp. 55-62. · Zbl 0682.60031
[35] V. S. BORKAR, White-noise representations in stochastic realization theory, SIAM J. on Control and Optimization, 31 (1993), pp. 1093-1102. · Zbl 0788.93081
[36] V. S. BORKAR, Average cost dynamic programming equations for controlled Markov chains with partial observations, SIAM J. Control Optim., 39 (2000), pp. 673-681. · Zbl 1011.93110
[37] V. S. BORKAR, Dynamic programming for ergodic control with partial observations, Stochastic Processes and their Applications, 103 (2003), pp. 293-310. · Zbl 1075.60522
[38] V. S. BORKAR, Dynamic programming for ergodic control of Markov chains under partial observations: A correction, SIAM J. Control Optim., 45 (2007), pp. 2299-2304. · Zbl 1126.93435
[39] V. S. BORKAR AND A. BUDHIRAJA, A further remark on dynamic programming for partially observed Markov processes, Stochastic Processes and their Applications, 112 (2004), pp. 79-93. · Zbl 1114.93098
[40] R. W. BROCKETT, Asymptotic stability and feedback stabilization, Differential geometric control theory, 27 (1983), pp. 181-191. · Zbl 0528.93051
[41] N. BRUNNER, D. CAVALCANTI, S. PIRONIO, V. SCARANI, AND S. WEHNER, Bell nonlocality, Reviews of Modern Physics, 86 (2014), p. 419.
[42] N. BRUNNER, N. GISIN, AND V. SCARANI, Entanglement and non-locality are different resources, New Journal of Physics, 7 (2005), pp. 88-88.
[43] P. CEMBRANOS AND J. MENDOZA, Banach Spaces of Vector-Valued Functions, Springer-Verlag, 1997. · Zbl 0902.46017
[44] C. D. CHARALAMBOUS, Decentralized optimality conditions of stochastic differential decision problems via Girsanov’s measure transformation, Mathematics of Control, Signals, and Systems, 28 (2016), pp. 1-55. · Zbl 1346.93395
[45] C. D. CHARALAMBOUS AND N. U. AHMED, Centralized versus decentralized optimization of distributed stochastic differential decision systems with different information structures-part i: A general theory, IEEE Transactions on Automatic Control, 62 (2017), pp. 1194-1209. · Zbl 1366.93700
[46] C. Y. CHONG AND M. ATHANS, On the periodic coordination of linear stochastic systems, Automatica, 12 (1976), pp. 321-335. · Zbl 0335.93059
[47] J. F. CLAUSER, M. A. HORNE, A. SHIMONY, AND R. A. HOLT, Proposed experiment to test local hidden-variable theories, Physical Review Letters, 23 (1969), p. 880. · Zbl 1371.81014
[48] R. CLEVE, P. HOYER, B. TONER, AND J. WATROUS, Consequences and limits of nonlocal strategies, in Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004., June 2004, pp. 236-249.
[49] A. COLADANGELO AND J.STARK, An inherently infinite-dimensional quantum correlation, Nat Commun, 11 (2020), p. 3335.
[50] M. H. A. DAVIS AND P. VARAIYA, Information states for linear stochastic systems, Journal of Mathematical Analysis and Applications, 37 (1972), pp. 384-402. · Zbl 0197.42502
[51] M. H. A. DAVIS AND P. VARAIYA, Dynamic programming conditions for partially observable stochastic systems, SIAM Journal on Control, 11 (1973), pp. 226-261. · Zbl 0258.93029
[52] J. DIESTEL AND J. UHL, Vector Measures, American Mathematical Society, 1977. · Zbl 0369.46039
[53] J. M. DONOHUE AND E. WOLFE, Identifying nonconvexity in the sets of limited-dimension quantum correlations, Phys. Rev. A, 92 (2015), p. 062120.
[54] R. M. DUDLEY, Real Analysis and Probability, Cambridge University Press, Cambridge, 2nd ed., 2002. · Zbl 1023.60001
[55] E. B. DYNKIN AND A. A. YUSHKEVICH, Controlled Markov processes, vol. 235, Springer, 1979. · Zbl 0426.60063
[56] A. EINSTEIN, B. PODOLSKY, AND N. ROSEN, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47 (1935), pp. 777-780. · Zbl 0012.04201
[57] S. N. ETHIER AND T. G. KURTZ, Markov processes: characterization and convergence, vol. 282, John Wiley & Sons, 2009.
[58] K. F. PÁL AND T. VERTESI, Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems, Phys. Rev. A, 82 (2010).
[59] E. A. FEINBERG, Non-randomized Markov and semi-Markov strategies in dynamic programming, Theory of Probability & Its Applications, (1982), pp. 116-126. · Zbl 0499.60093
[60] E. A. FEINBERG, On measurability and representation of strategic measures in markov decision processes, Institute of Mathematical Statistics Lecture Notes. Eds. T. S. Ferguson, L. S. Shapley, J. B. MacQueen, (1996), pp. 29-43.
[61] M. FISCHER, On the connection between symmetric N-player games and mean field games, The Annals of Applied Probability, 27 (2017), pp. 757-810. · Zbl 1375.91009
[62] W. FLEMING AND E. PARDOUX, Optimal control for partially observed diffusions, SIAM J. Control Optim., 20 (1982), pp. 261-285. · Zbl 0484.93077
[63] G. B. FOLLAND, Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, 1999. · Zbl 0924.28001
[64] F. FORGES, An approach to communication equilibria, Econometrica: Journal of the Econometric Society, (1986), pp. 1375-1385. · Zbl 0605.90146
[65] I. I. GIHMAN AND A. V. SKOROHOD, Controlled stochastic processes, Springer Science & Business Media, 2012.
[66] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theory of Probability & Its Applications, 5 (1960), pp. 285-301. · Zbl 0100.34004
[67] K. T. GOH, J. KANIEWSKI, E. WOLFE, T. VÉRTESI, X. WU, Y. CAI, Y.-C. LIANG, AND V. SCARANI, Geometry of the set of quantum correlations, Phys. Rev. A, 97 (2018), p. 022104.
[68] A. GUPTA, Existence of team-optimal solutions in static teams with common information: A topology of information approach, SIAM Journal on Control and Optimization, 58 (2020), pp. 998-1021. · Zbl 1441.93339
[69] A. GUPTA, S. YÜKSEL, T. BAŞAR, AND C. LANGBORT, On the existence of optimal policies for a class of static and sequential dynamic teams, SIAM Journal on Control and Optimization, 53 (2015), pp. 1681-1712. · Zbl 1317.93013
[70] M. F. HELLWIG, Sequential decisions under uncertainty and the maximum theorem, Journal of Mathematical Economics, 25 (1996), pp. 443-464. · Zbl 0870.90006
[71] O. HERNÁNDEZ-LERMA AND J. LASSERRE, Markov Chains and Invariant Probabilities, Birkhauser, 2003. · Zbl 1036.60003
[72] O. HERNÁNDEZ-LERMA AND J. B. LASSERRE, Discrete-Time Markov Control Processes: Basic Optimality Criteria, Springer, 1996.
[73] Y. C. HO AND K. C. CHU, Team decision theory and information structures in optimal control problems - part I, IEEE Transactions on Automatic Control, 17 (1972), pp. 15-22. · Zbl 0259.93059
[74] Y. C. HO AND K. C. CHU, On the equivalence of information structures in static and dynamic teams, IEEE Transactions on Automatic Control, 18 (1973), pp. 187-188. · Zbl 0266.90009
[75] I. HOGEBOOM-BURR AND S. YÜKSEL, Zero-sum games involving teams against teams: Existence of equilibria, and comparison and regularity in information, arXiv:2206.12048, (2022).
[76] A. S. HOLEVO, Probabilistic and Statistical Aspects of Quantum Theory, Edizioni della Normale, 2011. · Zbl 1338.81001
[77] M. HUANG, P. E. CAINES, AND R. P. MALHAMÉ, Large population stochastic dynamic games: closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information and Systems, 6 (2006), pp. 221-251. · Zbl 1136.91349
[78] M. HUANG, P. E. CAINES, AND R. P. MALHAMÉ, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ϵ-Nash equilibria, IEEE Transactions on Automatic Control, 52 (2007), pp. 1560-1571. · Zbl 1366.91016
[79] M. HUANG, P. E. CAINES, AND R. P. MALHAMÉ, Social optima in mean field LQG control: centralized and decentralized strategies, IEEE Transactions on Automatic Control, 57 (2012), pp. 1736-1751. · Zbl 1369.49052
[80] S. JAFARPOUR AND A. LEWIS, Locally convex topologies and control theory, Mathematics of Control, Signals, and Systems, 28 (2016), p. 29. · Zbl 1357.93047
[81] Z. JI, A. NATARAJAN, T. VIDICK, J. WRIGHT, AND H. YUEN, Mip*= re, arXiv preprint arXiv:2001.04383, (2020).
[82] A. KARA AND S. YÜKSEL, Robustness to incorrect system models in stochastic control, SIAM Journal on Control and Optimization, 58 (2020), pp. 1144-1182. · Zbl 1441.93342
[83] J. KEMPE, H. KOBAYASHI, K. MATSUMOTO, B. TONER, AND T. VIDICK, Entangled games are hard to approximate, SIAM Journal on Computing, 40 (2011), pp. 848-877. · Zbl 1226.81048
[84] J. KEMPE, O. REGEV, AND B. TONER, Unique games with entangled provers are easy, SIAM Journal on Computing, 39 (2010), pp. 3207-3229. · Zbl 1244.68040
[85] J. KRAINAK, J. SPEYER, AND S. MARCUS, Static team problems – part I: Sufficient conditions and the exponential cost criterion, IEEE Transactions on Automatic Control, 27 (1982), pp. 839-848. · Zbl 0493.93056
[86] H. KUHN, Extensive games and the problem of information, In Contributions to the Theory of Games, (H. Kuhn and A. Tucker, editors), (1953), pp. 193-216. · Zbl 0050.14303
[87] A. KULKARNI, Near-optimality of linear strategies for static teams with ’big‘ non-gaussian noise. arXiv:1603.03160, 2016.
[88] A. KULKARNI, Local and networked mean-square estimation with high dimensional log-concave noise, IEEE Trans. Inf. Theory, 64 (2018), pp. 2759-2773. · Zbl 1464.62371
[89] A. A. KULKARNI AND T. P. COLEMAN, An optimizer’s approach to stochastic control problems with nonclassical information structures, IEEE Transactions on Automatic Control, 60 (2014), pp. 937-949. · Zbl 1360.93779
[90] H. KUSHNER, Stochastic stability and control, Academic Press, New York, 1967. · Zbl 0244.93065
[91] D. LACKER, A general characterization of the mean field limit for stochastic differential games, Probability Theory and Related Fields, 165 (2016), pp. 581-648. · Zbl 1344.60065
[92] D. LACKER, Probabilistic compactification methods for stochastic optimal control and mean field games, (2018).
[93] A. LAMPERSKI AND L. LESSARD, Optimal decentralized state-feedback control with sparsity and delays, Automatica, 58 (2015), pp. 143-151. · Zbl 1330.93012
[94] S. LANG, Real and Functional Analysis, Springer-Verlag, 1993. · Zbl 0831.46001
[95] H. LANGEN, Convergence of dynamic programming models, Math. Oper. Res., 6 (1981), pp. 493-512. · Zbl 0496.90085
[96] J. M. LASRY AND P. L. LIONS, Mean field games, Japanese J. of Mathematics, 2 (2007), pp. 229-260. · Zbl 1156.91321
[97] E. LEHRER, D. ROSENBERG, AND E. SHMAYA, Signaling and mediation in games with common interests, Games and Economic Behavior, 68 (2010), pp. 670-682. · Zbl 1200.91049
[98] A. LINDQUIST, On feedback control of linear stochastic systems, SIAM Journal on Control, 11 (1973), pp. 323-343. · Zbl 0256.93065
[99] D. LUENBERGER, Optimization by Vector Space Methods, John Wiley & Sons, New York, NY, 1969. · Zbl 0176.12701
[100] A. MAHAJAN, N. MARTINS, M. ROTKOWITZ, AND S. YÜKSEL, Information structures in optimal decentralized control, in IEEE Conference on Decision and Control, Hawaii, USA, 2012.
[101] A. MAHAJAN, N. C. MARTINS, AND S. YÜKSEL, Static LQG teams with countably infinite players, in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, IEEE, 2013, pp. 6765-6770.
[102] L. MASANES, A. ACIN, AND N. GISIN, General properties of nonsignaling theories, Phys. Rev. A, 73 (2006), p. 012112.
[103] E. MASCOLO AND L. MIGLIACCIO, Relaxation methods in control theory, Applied Mathematics and Optimization, 20 (1989), pp. 97-103. · Zbl 0682.49007
[104] J.-F. MERTENS, S. SORIN, AND S. ZAMIR, Repeated games, vol. 55, Cambridge University Press, 2015. · Zbl 1336.91005
[105] P. R. MILGROM AND R. J. WEBER, Distributional strategies for games with incomplete information, Mathematics of operations research, 10 (1985), pp. 619-632. · Zbl 0582.90106
[106] P. MOHAJERIN ESFAHANI, T. SUTTER, D. KUHN, AND J. LYGEROS, From infinite to finite programs: Explicit error bounds with applications to approximate dynamic programming, SIAM Journal on Optimization, 28 (2018), pp. 1968-1998. · Zbl 1422.90021
[107] A. NATARAJAN AND T. VIDICK, Two-player entangled games are NP-hard, in Proceedings of the 33rd Computational Complexity Conference, CCC ’18, 2018, pp. 20:1-20:18. · Zbl 1441.68079
[108] M. NAVASCUÉS, S. PIRONIO, AND A. ACÍN, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations, New Journal of Physics, 10 (2008), p. 073013.
[109] A. NAYYAR, A. MAHAJAN, AND D. TENEKETZIS, Optimal control strategies in delayed sharing information structures, IEEE Transactions on Automatic Control, 56 (2011), pp. 1606-1620. · Zbl 1368.90170
[110] A. NAYYAR, A. MAHAJAN, AND D. TENEKETZIS, The common-information approach to decentralized stochastic control, in Information and Control in Networks, Editors: G. Como, B. Bernhardsson, A. Rantzer, Springer, 2013.
[111] M. NIELSEN AND I. CHUANG, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2010. · Zbl 1288.81001
[112] C. PAPADIMITRIOU AND J. TSITSIKLIS, Intractable problems in control theory, SIAM J. Control Optim., 24 (1986), pp. 639-654. · Zbl 0604.90009
[113] K. PARTHASARATHY, Probability Measures on Metric Spaces, AMS Bookstore, 1967. · Zbl 0153.19101
[114] R. PHELPS, Lectures on Choquet’s theorem, Van Nostrand, New York:, 1966. · Zbl 0135.36203
[115] A. B. PIUNOVSKIY, Controlled random sequences: methods of convex analysis and problems with functional constraints, Russian Mathematical Surveys, 53 (1998), pp. 1233-1293. · Zbl 0941.93056
[116] S. POPESCU AND D. ROHRLICH, Quantum nonlocality as an axiom, Foundations of Physics, 24 (1994), pp. 379-385.
[117] R. RADNER, Team decision problems, Ann. Math. Statist., 33 (1962), pp. 857-881. · Zbl 0217.57103
[118] E. P. RYAN, On brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback, SIAM Journal on Control and Optimization, 32 (1994), pp. 1597-1604. · Zbl 0806.93049
[119] N. SALDI, A topology for team policies and existence of optimal team policies in stochastic team theory, IEEE Transactions on Automatic Control, 65 (2020), pp. 310-317. · Zbl 1483.93706
[120] N. SALDI, S. YÜKSEL, AND T. LINDER, Finite model approximations and asymptotic optimality of quantized policies in decentralized stochastic control, IEEE Transactions on Automatic Control, 62 (2017), pp. 2360-2373. · Zbl 1366.93706
[121] S. SANJARI, N. SALDI, AND S. YÜKSEL, Optimality of independently randomized symmetric policies for exchangeable stochastic teams with infinitely many decision makers, arXiv preprint arXiv:2008.11570, (2020).
[122] S. SANJARI AND S. YÜKSEL, Optimal solutions to infinite-player stochastic teams and mean-field teams, IEEE Transactions on Automatic Control, (2020).
[123] S. SANJARI AND S. YÜKSEL, Optimal policies for convex symmetric stochastic dynamic teams and their mean-field limit, SIAM Journal on Control and Optimization, 59 (2021), pp. 777-804. · Zbl 1459.93193
[124] M. SCHÄL, Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal, Z. Wahrscheinlichkeitsth, 32 (1975), pp. 179-296. · Zbl 0316.90080
[125] M. SCHÄL, On dynamic programming: compactness of the space of policies, Stochastic Processes and their Applications, 3 (1975), pp. 345-364. · Zbl 0317.60025
[126] R. SERFOZO, Convergence of lebesgue integrals with varying measures, Sankhy¯a: The Indian Journal of Statistics, Series A, (1982), pp. 380-402. · Zbl 0568.28005
[127] R. SERFOZO, Convergence of Lebesgue integrals with varying measures, Sankhya Ser.A, (1982), pp. 380-402. · Zbl 0568.28005
[128] W. SLOFSTRA, The set of quantum correlations is not closed, in Forum of Mathematics, Pi, vol. 7, Cambridge University Press, 2019. · Zbl 1405.81021
[129] E. D. SONTAG, Mathematical control theory: deterministic finite dimensional systems, vol. 6, Springer Science & Business Media, 2013.
[130] D. TENEKETZIS, On information structures and nonsequential stochastic control, CWI Quarterly, 9 (1996), pp. 241-260. · Zbl 0868.93007
[131] T. VIDICK, Three-player entangled xor games are NP-hard to approximate, SIAM Journal on Computing, 45 (2016), pp. 1007-1063. · Zbl 1342.81080
[132] A. B. WAGNER AND V. ANANTHARAM, An improved outer bound for multiterminal source coding, IEEE Transactions on Information Theory, 54 (2008), pp. 1919-1937. · Zbl 1329.94037
[133] B. C. WANG AND J. F. ZHANG, Social optima in mean field linear-quadratic-gaussian models with markov jump parameters, SIAM Journal on Control and Optimization, 55 (2017), pp. 429-456.
[134] J. WARGA, Optimal control of differential and functional equations, Academic press, 2014.
[135] J. WATROUS, The Theory of Quantum Information, Cambridge University Press, 2018. · Zbl 1393.81004
[136] R. L. WHEEDEN AND A. ZYGMUND, Measure and Integral, Marcel Dekker, New York, 1977. · Zbl 0362.26004
[137] H. S. WITSENHAUSEN, A counterexample in stochastic optimal control, SIAM J. Contr., 6 (1968), pp. 131-147. · Zbl 0159.13404
[138] H. S. WITSENHAUSEN, A counterexample in stochastic optimum control, SIAM J. on Control and Optimization, 6 (1968), pp. 131-147. · Zbl 0159.13404
[139] H. S. WITSENHAUSEN„ On information structures, feedback and causality, SIAM J. Control, 9 (1971), pp. 149-160. · Zbl 0236.93040
[140] H. S. WITSENHAUSEN, A standard form for sequential stochastic control, Mathematical Systems Theory, 7 (1973), pp. 5-11. · Zbl 0256.93063
[141] H. S. WITSENHAUSEN, The intrinsic model for discrete stochastic control: Some open problems, Lecture Notes in Econ. and Math. Syst., Springer-Verlag, 107 (1975), pp. 322-335. · Zbl 0323.93051
[142] H. S. WITSENHAUSEN, Equivalent stochastic control problems, Math. Control, Signals and Systems, 1 (1988), pp. 3-11. · Zbl 0659.93078
[143] W. M. WONHAM, On the separation theorem of stochastic control, SIAM Journal on Control, 6 (1968), pp. 312-326. · Zbl 0164.19101
[144] Y. WU AND S. VERDÚ, Witsenhausen’s counterexample: a view from optimal transport theory, in Proceedings of the IEEE Conference on Decision and Control, Florida, USA, December 2011, pp. 5732-5737.
[145] T. YOSHIKAWA, Dynamic programming approach to decentralized control problems, IEEE Transactions on Automatic Control, 20 (1975), pp. 796-797. · Zbl 0325.93039
[146] L. C. YOUNG, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Societe des Sci. et des Lettres de Varsovie, 30 (1937), pp. 212-234. · Zbl 0019.21901
[147] S. YÜKSEL, Stochastic nestedness and the belief sharing information pattern, IEEE Transactions on Automatic Control, 54 (2009), pp. 2773-2786. · Zbl 1367.94277
[148] S. YÜKSEL, A universal dynamic program and refined existence results for decentralized stochastic control, SIAM Journal on Control and Optimization, 58 (2020), pp. 2711-2739. · Zbl 1451.93419
[149] S. YÜKSEL AND T. BAŞAR, Stochastic Networked Control Systems: Stabilization and Optimization under Information Constraints, Springer, New York, 2013. · Zbl 1280.93003
[150] S. YÜKSEL AND T. LINDER, Optimization and convergence of observation channels in stochastic control, SIAM J. on Control and Optimization, 50 (2012), pp. 864-887. · Zbl 1244.93179
[151] S. YÜKSEL AND N. SALDI, Convex analysis in decentralized stochastic control, strategic measures and optimal solutions, SIAM J. on Control and Optimization, 55 (2017), pp. 1-28. · Zbl 1352.93108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.