×

On linear differential equations with periodic coefficients. (Sur les équations différentielles linéaires à coefficients périodiques.) (French) JFM 15.0279.01

Gegenstand der Untersuchung ist die Differentialgleichung \(P(y)= 0\) mit überall eindeutigen Coefficienten, die die gemeinsame Periode \(\omega\) haben. Die Form ihrer Integrale könnte durch die Substitution \(\xi=e^{\frac{2\pi x\sqrt{-1}}{\omega}}\) mittelst der bekannten Sätze über das Verhalten der Integrale in der Umgebung eines singulären Punktes, nämlich um \(\xi = 0\), ermittelt werden. Allein der Verfasser zieht es vor, die Frage direct zu behandeln. Sind \(f_1 (x),\dots,f_m(x)\) \(m\) von einander unabhängige Integrale der Gleichung \(P(y) = 0\), dann ist \[ f_k(x+\omega)=A_{k1} f_1(x) + \cdots + A_{km} f_m(x) \quad (k=1,2,\dots,m). \] Ist dann \(\varepsilon\) eine einfache Wurzel der Fundamentalgleichung \[ \varDelta = \begin{vmatrix} A_{11}-\varepsilon & \dots & A_{1m} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mm}-\varepsilon \end{vmatrix} =0, \] so entspricht ihr ein periodisches Integral zweiter Art \[ F(x) = u_1f_1(x)+u_2f_2(x)+\cdots +u_mf_m(x), \] welches der Relation \[ F(x+\omega) = \varepsilon F(x) \] genügt. Ist \(\varepsilon\) eine \(\mu\)-fache Wurzel der Gleichung \(\varDelta = 0\), so entsprechen ihr \(\mu\) Integrale, die nach der Beschaffenheit von \(\varDelta\) in gewisse Untergruppen zerfallen (vgl. Borchardt J. LXXVI. 113 ff.; F. d. M. V. 1873. 173, JFM 05.0173.02). Die Functionen einer Gruppe von \(\nu\) Elementen \(G_1, G_2,\dots,G_\nu\) genügen den Relationen: \[ G_1(x+\omega) = \varepsilon G_1(x), G_2(x+\omega)=G_1(x)+\varepsilon G_2(x),\dots, \]
\[ G_\nu(x+\omega)=G_{\nu-1}(x) + \varepsilon G_\nu(x). \] Bedeuten \(\varphi_1(x),\dots,\varphi_\nu(x)\) eindeutige periodische Functionen zweiter Art mit der Periode \(\omega\) und dem nämlichen Multiplicator \(\varepsilon\), und setzt man zur Abkürzung \[ g(x)=\varphi_1(x)+x\varphi_2(x)+x^2 \varphi_3(x) + \cdots +x^{\nu-1}\varphi_\nu(x), \] dann sind die Ausdrücke der \(v\) Elemente \[ G_\nu(x)=g(x),G_{\nu-1}(x)=\varepsilon \varDelta g(x),\dots,G_1(x) = \varepsilon^{\nu-1}\varDelta^{\nu-1} g(x), \] wo \(\varDelta g(x)\) die Differenz \(g(x+\omega)-g(x)\) und \(\varDelta^ig(x)\) die \(i^{\text te}\) Differenz bezeichnet. Es werden übrigens ausser vorstehenden noch verschiedene Formen für ein Fundamentalsystem von Integralen der Gleichung aufgestellt. Die Zahl der linear unabhängigen periodischen Integrale zweiter Art ist stets, wenn \(\varepsilon_1,\dots,\varepsilon_n\) die verschiedenen Wurzeln von \(\varDelta = 0\) sind und \(\lambda\) die Ordnung bezeichnet, von welcher an die Unterdeterminanten von \(\varDelta\) aufhören sämtlich Null zu sein für \(\varepsilon=\varepsilon_i\), gleich der Summe \(\lambda_1+\lambda_2+\cdots + \lambda_n\).

MSC:

34A30 Linear ordinary differential equations and systems

Citations:

JFM 05.0173.02
PDF BibTeX XML Cite
Full Text: Numdam EuDML