Recurrence of the uniform infinite half-plane map via duality of resistances. (English) Zbl 1500.05056

Summary: We study the simple random walk on the Uniform Infinite Half-Plane Map, which is the local limit of critical Boltzmann planar maps with a large and simple boundary. We prove that the simple random walk is recurrent, and that the resistance between the root and the boundary of the hull of radius \(r\) is at least of order \(\log r\). This resistance bound is expected to be sharp, and is better than those following from previous proofs of recurrence for nonbounded-degree planar maps models. Our main tools are the self-duality of uniform planar maps, a classical lemma about duality of resistances and some peeling estimates. The proof shares some ideas with Russo-Seymour-Welsh theory in percolation.


05C81 Random walks on graphs
05C80 Random graphs (graph-theoretic aspects)
05C10 Planar graphs; geometric and topological aspects of graph theory
60D05 Geometric probability and stochastic geometry
Full Text: DOI arXiv


[1] ANGEL, O. (2005). Scaling of percolation on infinite planar maps, I. Available at arXiv:0501006.
[2] ANGEL, O. and CURIEN, N. (2014). Percolations on infinite random maps, half-plane models. Ann. Inst. Henri Poincaré Probab. Stat. 51 405-431. · Zbl 1315.60105
[3] ANGEL, O. and RAY, G. (2018). The half plane UIPT is recurrent. Probab. Theory Related Fields 170 657-683. · Zbl 1482.05316
[4] Angel, O. and Schramm, O. (2003). Uniform infinite planar triangulations. Comm. Math. Phys. 241 191-213. · Zbl 1098.60010
[5] BENJAMINI, I. and SCHRAMM, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 23. · Zbl 1010.82021
[6] Biskup, M., Ding, J. and Goswami, S. (2020). Return probability and recurrence for the random walk driven by two-dimensional Gaussian free field. Comm. Math. Phys. 373 45-106. · Zbl 1471.60154
[7] BJÖRNBERG, J. E. and STEFÁNSSON, S. Ö. (2014). Recurrence of bipartite planar maps. Electron. J. Probab. 19 31. · Zbl 1286.05153
[8] BOUTTIER, J. and GUITTER, E. (2009). Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 465208. · Zbl 1179.82069
[9] BUDD, T. (2015). The peeling process of infinite Boltzmann planar maps. Electron. J. Combin. 23 1.28. · Zbl 1331.05192
[10] CARACENI, A. and CURIEN, N. (2018). Geometry of the uniform infinite half-planar quadrangulation. Random Structures Algorithms 52 454-494. · Zbl 1387.05232
[11] Chassaing, P. and Durhuus, B. (2006). Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 879-917. · Zbl 1102.60007
[12] Chen, L. (2017). Basic properties of the infinite critical-FK random map. Ann. Inst. Henri Poincaré D 4 245-271. · Zbl 1381.60033
[13] CURIEN, N. (2019). Peeling random planar maps. Saint-Flour Lecture Notes.
[14] CURIEN, N. and LE GALL, J.-F. (2017). Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat. 53 322-357. · Zbl 1358.05255
[15] CURIEN, N. and MIERMONT, G. (2015). Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms 47 30-58. · Zbl 1351.60011
[16] Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics. Cambridge Univ. Press, Cambridge. · Zbl 1165.05001
[17] Gurel-Gurevich, O. and Nachmias, A. (2013). Recurrence of planar graph limits. Ann. of Math. (2) 177 761-781. · Zbl 1262.05031
[18] Gwynne, E. and Hutchcroft, T. (2020). Anomalous diffusion of random walk on random planar maps. Probab. Theory Related Fields 178 567-611. · Zbl 1471.60160
[19] GWYNNE, E. and MILLER, J. (2021). Random walk on random planar maps: Spectral dimension, resistance and displacement. Ann. Probab. 49 1097-1128. · Zbl 1483.60069
[20] KRIKUN, M. (2005). Local structure of random quadrangulations. Available at arXiv:0512304.
[21] LE GALL, J.-F. and LEHÉRICY, T. (2019). Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation. Ann. Probab. 47 1498-1540. · Zbl 1414.05267
[22] LEE, J. R. (2021). Conformal growth rates and spectral geometry on distributional limits of graphs. Ann. Probab. 49 2671-2731. · Zbl 1482.05319
[23] LEHÉRICY, T. (2022). First-passage percolation in random planar maps and Tutte’s bijection. Electron. J. Probab. 27 30. · Zbl 1491.60020
[24] MÉNARD, L. and NOLIN, P. (2014). Percolation on uniform infinite planar maps. Electron. J. Probab. 19 79. · Zbl 1300.60114
[25] RICHIER, L. (2015). Universal aspects of critical percolation on random half-planar maps. Electron. J. Probab. 20 129. · Zbl 1329.05267
[26] STEPHENSON, R. (2018). Local convergence of large critical multi-type Galton-Watson trees and applications to random maps. J. Theoret. Probab. 31 159-205 · Zbl 1393.05244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.