×

Solitary wave solutions of nonlinear integro-partial differential equations of \((2 + 1)\)-dimensional and its models. (English) Zbl 1500.35250


MSC:

35Q51 Soliton equations
35C08 Soliton solutions
35C09 Trigonometric solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
35R09 Integro-partial differential equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems

References:

[1] Lu, D.; Seadawy, A. R.; Iqbal, M., Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications, Results in Physics, 11, 1161-1171 (2018) · doi:10.1016/j.rinp.2018.11.014
[2] Akram, U.; Seadawy, A. R.; Rizvi, S. T. R.; Younis, M.; Saad Althobaiti, D.; Sayed, S., Traveling wave solutions for the fractional Wazwaz-Benjamin-Bona-Mahony model in arising shallow water waves, Results in Physics, 15 (2021) · doi:10.1016/j.rinp.2020.103725
[3] Rani, M.; Ahmed, N.; Dragomir, S. S.; Mohyud-Din, S. T.; Khan, I.; Nisar, K. S., Some newly explored exact solitary wave solutions to nonlinear inhomogeneous Murnaghan’s rod equation of fractional order, Journal of Taibah University for Science, 15, 1, 97-110 (2021) · doi:10.1080/16583655.2020.1841472
[4] Ma, W.-X., N-soliton solutions and the Hirota conditions in (2+1)-dimensions, Optical and Quantum Electronics, 52, 12 (2020) · doi:10.1007/s11082-020-02628-7
[5] Ma, W.-X., N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Mathematics and Computers in Simulation, 190, 270-279 (2021) · Zbl 1540.35103 · doi:10.1016/j.matcom.2021.05.020
[6] Wang, M., Exact solutions for a compound kdv-burgers equation, Physics Letters A, 213, 5-6, 279-287 (1996) · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-x
[7] Wang, M.; Zhou, Y.; Li, Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A, 216, 1-5, 67-75 (1996) · Zbl 1125.35401 · doi:10.1016/0375-9601(96)00283-6
[8] Hu, H.-C.; Tang, X.-Y.; Lou, S.-Y.; Liu, Q.-P., Variable separation solutions obtained from Darboux Transformations for the asymmetric Nizhnik-Novikov-Veselov system, Chaos, Solitons & Fractals, 22, 2, 327-334 (2004) · Zbl 1063.35135 · doi:10.1016/j.chaos.2004.02.002
[9] Leble, S. B.; Ustinov, N. V., Darboux transforms, deep reductions and solitons, Journal of Physics A: Mathematical and General, 26, 19, 5007-5016 (1993) · Zbl 0809.35097 · doi:10.1088/0305-4470/26/19/029
[10] Mahmoud El-Shiekh, R.; Al-Nowehy, A.-G., Integral methods to solve the variable coefficient nonlinear schrödinger equation, Zeitschrift für Naturforschung A, 68a, 255-260 (2013) · doi:10.5560/zna.2012-0108
[11] Feng, Z.; Wang, X., The first integral method to the two-dimensional burgers-korteweg-de vries equation, Physics Letters A, 308, 2-3, 173-178 (2003) · Zbl 1008.35062 · doi:10.1016/s0375-9601(03)00016-1
[12] Abdusalam, Η. A., On an improved complex tanh-function method, International Journal of Nonlinear Sciences and Numerical Stimulation, 6, 2, 99-106 (2005) · Zbl 1401.35012 · doi:10.1515/ijnsns.2005.6.2.99
[13] Mohamad Jawad, A. J.; Petković, M. D.; Biswas, A., Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 217, 2, 869-877 (2010) · Zbl 1201.65119 · doi:10.1016/j.amc.2010.06.030
[14] Kostiuchko, S.; Tchaban, V., Variational method of auxiliary equations in nonlinear systems analysis and synthesis problems, Proceedings of the 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE) · doi:10.1109/cpee47179.2019.8949123
[15] Alhakim, L. A.; Moussa, A. A., The double auxiliary equations method and its application to space-time fractional nonlinear equations, Journal of Ocean Engineering and Science, 4, 1, 7-13 (2019) · doi:10.1016/j.joes.2018.12.002
[16] Jiong, S.; Sirendaoreji, Auxiliary equation method for solving nonlinear partial differential equations, Physics Letters A, 309, 5-6, 387-396 (2003) · Zbl 1011.35035 · doi:10.1016/S0375-9601(03)00196-8
[17] Zhang, J.; Wei, X.; Lu, Y., A generalized (g’/g)-expansion method and its applications, Physics Letters A, 372, 20, 3653-3658 (2008) · Zbl 1220.37070 · doi:10.1016/j.physleta.2008.02.027
[18] Wang, M.; Li, X.; Zhang, J., The (g’/g)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372, 4, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[19] Abdou, M. A., The extended f-expansion method and its application for a class of nonlinear evolution equations, Chaos, Solitons & Fractals, 31, 1, 95-104 (2007) · Zbl 1138.35385 · doi:10.1016/j.chaos.2005.09.030
[20] Wang, M.; Li, X., Extended f- expansion method and periodic wave solutions for the generalized zakharov equations, Physics Letters A, 343, 1-3, 48-54 (2005) · Zbl 1181.35255 · doi:10.1016/j.physleta.2005.05.085
[21] Zhang, J.-L.; Wang, M.-L.; Wang, Y.-M.; Fang, Z.-D., The improved f-expansionmethod and its applications, Physics Letters A, 350, 1-2, 103-109 (2006) · Zbl 1195.65211 · doi:10.1016/j.physleta.2005.10.099
[22] Boulton, L.; Olver, P. J.; Pelloni, B.; Smith, D. A., New revival phenomena for linear integro-differential equations, Studies in Applied Mathematics, 147 (2021) · Zbl 1485.81046 · doi:10.1111/sapm.12397
[23] Gepreel, K. A.; Nofal, T. A.; Alasmari, A. A., Exact solutions for nonlinear integro-partial differential equations using the generalized Kudryashov method, Journal of the Egyptian Mathematical Society, 25, 4, 438-444 (2017) · Zbl 1398.35195 · doi:10.1016/j.joems.2017.09.001
[24] Ali, M. N.; Husnine, S. M.; Saha, A.; Bhowmik, S. K.; Dhawan, S.; Ak, T., Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma-Tasso-Olver equation, Nonlinear Dynamics, 94, 3, 1791-1801 (2018) · doi:10.1007/s11071-018-4457-x
[25] Alquran, M. T., Applying differential transform method to nonlinear partial differential equations: a modified approach, Applications and Applied Mathematics: International Journal, 7, 1, 10 (2012) · Zbl 1366.35156
[26] Kaewta, S.; Sirisubtawee, S.; Sungnul, S., Application of the exp-function and generalized kudryashov methods for obtaining new exact solutions of certain nonlinear conformable time partial integro-differential equations, Computation, 9, 5, 52 (2021) · doi:10.3390/computation9050052
[27] Lu, C.; Fu, C.; Yang, H., Time-fractional generalized boussinesq equation for rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Applied Mathematics and Computation, 327, 104-116 (2018) · Zbl 1426.76721 · doi:10.1016/j.amc.2018.01.018
[28] Parola, A.; Reatto, L., Hierarchical reference theory of fluids and the critical point, Physical Review A, 31, 5, 3309-3322 (1985) · doi:10.1103/physreva.31.3309
[29] Geng, X.; Cao, C.; Dai, H. H., Quasi-periodic solutions for some (2 + 1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy, Journal of Physics A: Mathematical and General, 34, 5, 989-1004 (2001) · Zbl 0978.37054 · doi:10.1088/0305-4470/34/5/305
[30] Wazwaz, A.-M., The tanh-coth and the sech methods for exact solutions of the jaulent-miodek equation, Physics Letters A, 366, 1-2, 85-90 (2007) · Zbl 1203.81069 · doi:10.1016/j.physleta.2007.02.011
[31] Wazwaz, A.-M., The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation, Applied Mathematics and Computation, 200, 1, 160-166 (2008) · Zbl 1153.65364 · doi:10.1016/j.amc.2007.11.001
[32] Wazwaz, A.-M., Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method, Applied Mathematics and Computation, 202, 1, 275-286 (2008) · Zbl 1147.65109 · doi:10.1016/j.amc.2008.02.013
[33] He, Y.; Li, S.; Long, Y., Exact solutions of the klein-gordon equation by modified exp-function method, Int. math. forum, 7, 175-182 (2012) · Zbl 1246.65237
[34] Helal, M. A.; Seadawy, A. R.; Zekry, M. H., Stability analysis of solitary wave solutions for the fourth-order nonlinear boussinesq water wave equation, Applied Mathematics and Computation, 232, 1094-1103 (2014) · Zbl 1410.35169 · doi:10.1016/j.amc.2014.01.066
[35] Kaewta, S.; Sirisubtawee, S.; Khansai, N., Explicit exact solutions of the (2+ 1)-dimensional integro-differential jaulent-miodek evolution equation using the reliable methods, International Journal of Mathematics and Mathematical Sciences, 2020 (2020) · Zbl 1486.45017 · doi:10.1155/2020/2916395
[36] Pnevraatikos, S. N., Solitons in nonlinear atomic chains, North-holland Mathematics Studies, 103, 397-437 (1985) · Zbl 0574.70029 · doi:10.1016/s0304-0208(08)72139-x
[37] Hong-Cai, M.; Zhen-Yun, Q.; Ai-Ping, D., Symmetry transformation and new exact multiple kink and singular kink solutions for (2+1)-dimensional nonlinear models generated by the jaulent-miodek hierarchy, Communications in Theoretical Physics, 59, 2, 141-145 (2013) · Zbl 1264.37025 · doi:10.1088/0253-6102/59/2/03
[38] Kaplan, M.; Bekir, A., A novel analytical method for time-fractional differential equations, Optik, 127, 20, 8209-8214 (2016) · doi:10.1016/j.ijleo.2016.05.152
[39] Taha, W. M.; Noorani, M., Exact solutions of equation generated by the jaulentmiodek hierarchy by-expansion method, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1296.35014 · doi:10.1155/2013/392830
[40] Sadat, R.; Kassem, M., Explicit solutions for the (2 + 1)-dimensional jaulent-miodek equation using the integrating factors method in an unbounded domain, Mathematical and Computational Applications, 23, 1, 15 (2018) · Zbl 1390.35042 · doi:10.3390/mca23010015
[41] Ali, M. R.; Sadat, R.; Ma, W.-X., Investigation of new solutions for an extended (2+1)-dimensional calogero-bogoyavlenskii-schif equation, Frontiers of Mathematics in China, 16, 925-936 (2021) · Zbl 1480.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.