Parwani, Kamlesh \(C^1\) actions on the circle of finite index subgroups of \(\mathrm{Mod}(\Sigma_g)\), \(\mathrm{Aut}(F_n)\), and \(\mathrm{Out}(F_n)\). (English) Zbl 1501.37039 Rocky Mt. J. Math. 52, No. 3, 1021-1029 (2022). Summary: Let \(\Sigma_g\) be a closed, connected, and oriented surface of genus \(g \geq 24\), and let \(\Gamma\) be a finite index subgroup of the mapping class group \(\mathrm{Mod}(\Sigma_g)\) that contains the Torelli group \(\mathscr{I}(\Sigma_g)\). Then any orientation-preserving \(C^1\) action of \(\Gamma\) on the circle cannot be faithful.We also show that if \(\Gamma\) is a finite index subgroup of \(\mathrm{Aut}(F_n)\), when \(n \geq 8\), that contains the subgroup of IA-automorphisms, then any orientation-preserving \(C^1\) action of \(\Gamma\) on the circle cannot be faithful.Similarly, if \(\Gamma\) is a finite index subgroup of \(\mathrm{Out}(F_n)\), when \(n \geq 8\), that contains the Torelli group \(\mathscr{T}_n\), then any orientation preserving \(C^1\) action of \(\Gamma\) on the circle cannot be faithful.In fact, when \(n \geq 10\), any orientation-preserving \(C^1\) action of a finite index subgroup of \(\mathrm{Aut}(F_n)\) or \(\mathrm{Out}(F_n)\) on the circle cannot be faithful. Cited in 1 Document MSC: 37E10 Dynamical systems involving maps of the circle 20F65 Geometric group theory 57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.) Keywords:circle diffeomorphisms; group actions; mapping class group × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] H. Baik, S. Kim, and T. Koberda, “Unsmoothable group actions on compact one-manifolds”, J. Eur. Math. Soc. (JEMS) 21:8 (2019), 2333-2353. · Zbl 1454.20074 · doi:10.4171/jems/886 [2] B. Deroin, V. Kleptsyn, and A. Navas, “Sur la dynamique unidimensionnelle en régularité intermédiaire”, Acta Math. 199:2 (2007), 199-262. · Zbl 1139.37025 · doi:10.1007/s11511-007-0020-1 [3] M. Ershov and S. He, “On finiteness properties of the Johnson filtrations”, Duke Math. J. 167:9 (2018), 1713-1759. · Zbl 1498.20082 · doi:10.1215/00127094-2018-0005 [4] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press, Princeton, NJ, 2012. · Zbl 1245.57002 [5] E. Ghys, “Actions de réseaux sur le cercle”, Invent. Math. 137:1 (1999), 199-231. · Zbl 0995.57006 · doi:10.1007/s002220050329 [6] E. Ghys, “Groups acting on the circle”, Enseign. Math. (2) 47:3-4 (2001), 329-407. · Zbl 1044.37033 [7] R. M. Hain, “Torelli groups and geometry of moduli spaces of curves”, pp. 97-143 in Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), edited by H. Clemens and J. Kollár, Math. Sci. Res. Inst. Publ. 28, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0868.14006 [8] J. L. Harer, “Stability of the homology of the moduli spaces of Riemann surfaces with spin structure”, Math. Ann. 287:2 (1990), 323-334. · Zbl 0715.57004 · doi:10.1007/BF01446896 [9] N. V. Ivanov, “Mapping class groups”, pp. 523-633 in Handbook of geometric topology, edited by R. J. Daverman and R. B. Sher, North-Holland, Amsterdam, 2002. · Zbl 1002.57001 [10] D. L. Johnson, “Homeomorphisms of a surface which act trivially on homology”, Proc. Amer. Math. Soc. 75:1 (1979), 119-125. · Zbl 0407.57003 · doi:10.2307/2042686 [11] M. Kaluba, D. Kielak, and P. W. Nowak, “On property (T) for \[\text{Aut}(F_n)\] and \[\text{SL}_n(\mathbb{Z})\]”, Ann. of Math. (2) 193:2 (2021), 539-562. · Zbl 1483.22006 · doi:10.4007/annals.2021.193.2.3 [12] S. Kim, T. Koberda, and C. Rivas, “Virtual critical regularity of mapping class group actions on the circle”, preprint, 2021. [13] K. Mann and M. Wolff, “Rigidity of mapping class group actions on \[S^1\]”, Geom. Topol. 24:3 (2020), 1211-1223. · Zbl 1454.57014 · doi:10.2140/gt.2020.24.1211 [14] J. D. McCarthy, “On the first cohomology group of cofinite subgroups in surface mapping class groups”, Topology 40:2 (2001), 401-418. · Zbl 0976.14023 · doi:10.1016/S0040-9383(99)00066-X [15] A. Navas, “Actions de groupes de Kazhdan sur le cercle”, Ann. Sci. École Norm. Sup. (4) 35:5 (2002), 749-758. · Zbl 1028.58010 · doi:10.1016/S0012-9593(02)01107-2 [16] J. Nielsen, “Die Isomorphismengruppe der freien Gruppen”, Math. Ann. 91:3-4 (1924), 169-209. · JFM 50.0078.04 · doi:10.1007/BF01556078 [17] K. Parwani, “\[{C^1}\] actions on the mapping class groups on the circle”, Algebr. Geom. Topol. 8:2 (2008), 935-944. · Zbl 1155.37028 · doi:10.2140/agt.2008.8.935 [18] D. Pixton, “Nonsmoothable, unstable group actions”, Trans. Amer. Math. Soc. 229 (1977), 259-268. · Zbl 0361.58005 · doi:10.2307/1998509 [19] W. P. Thurston, “A generalization of the Reeb stability theorem”, Topology 13 (1974), 347-352. · Zbl 0305.57025 · doi:10.1016/0040-9383(74)90025-1 [20] K. Vogtmann, “Automorphisms of free groups and outer space”, pp. 1-31 in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94, 2002. · Zbl 1017.20035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.