Bouchikhi, Lahcen; El Kinani, Abdellah The Weyl functional calculus in Michael-algebras. (English) Zbl 1501.46043 Rocky Mt. J. Math. 52, No. 3, 805-816 (2022). Summary: We define and study a Weyl functional calculus for an \(n\)-tuple of commuting Paley-Wiener of \(r\)-exponential type elements of a Michael algebra. We show that this calculus preserves the same properties as in the Banach case. In particular, it is well defined for polynomials and gives results consistent with the natural algebraic definition. As applications, we obtain for bounded real numerical range series, two generalizations of P. Lévy theorems: the first one for Fourier series and the second for power series. MSC: 46H30 Functional calculus in topological algebras 46J05 General theory of commutative topological algebras Keywords:Fourier inversion formula; Weyl functional calculus; Michael algebra; Paley-Wiener of \(r\)-exponential type; numerical range; tempered distribution; joint spectrum; P. Lévy’s theorem analog × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] N. B. Andersen and M. de Jeu, “Real Paley-Wiener theorems and local spectral radius formulas”, Trans. Amer. Math. Soc. 362:7 (2010), 3613-3640. · Zbl 1194.42014 · doi:10.1090/S0002-9947-10-05044-0 [2] R. F. V. Anderson, “The Weyl functional calculus”, J. Functional Analysis 4 (1969), 240-267. · Zbl 0191.13403 · doi:10.1016/0022-1236(69)90013-5 [3] M. S. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Reidel, Dordrecht, 1987. · Zbl 0744.47017 [4] F. F. Bonsall and J. Duncan, Complete normed algebras, Ergeb. Math. Grenzgeb. 80, Springer, Heidelberg, 1973. · Zbl 0271.46039 [5] I. Colojoară and C. Foiaş, Theory of generalized spectral operators, Mathematics and its Applications 9, Gordon and Breach, New York, 1968. · Zbl 0189.44201 [6] H. El Atef and A. El Kinani, “Real analytic calculus for several variables and applications”, Rend. Circ. Mat. Palermo (2) 70:2 (2021), 653-663. · Zbl 1479.46061 · doi:10.1007/s12215-020-00517-2 [7] A. El Kinani and L. Bouchikhi, “A weighted algebra analogues of Wiener’s and Lévy’s theorems”, Rend. Circ. Mat. Palermo (2) 61:3 (2012), 331-341. · Zbl 1268.46033 · doi:10.1007/s12215-012-0093-3 [8] A. El Kinani and L. Bouchikhi, “Wiener’s and Lévy’s theorems for some weighted power series”, Rend. Circ. Mat. Palermo (2) 63:2 (2014), 301-309. · Zbl 1321.46052 · doi:10.1007/s12215-014-0159-5 [9] A. El Kinani and L. Bouchikhi, “Corrigendum and addendum to “Wiener’s and Lévy’s theorems for some weighted power series”, Rend. Circ. Mat. Palermo (2) 66:3 (2017), 429-437. · Zbl 1408.46047 · doi:10.1007/s12215-016-0265-7 [10] A. El Kinani and M. Oudadess, Distribution theory and applications, Series on Concrete and Applicable Mathematics 9, World Scientific, Hackensack, NJ, 2010. · Zbl 1217.46001 · doi:10.1142/7739 [11] C. Foiaş, “Une application des distributions vectorielles à la théorie spectrale”, Bull. Sci. Math. (2) 84 (1960), 147-158. · Zbl 0095.09905 [12] M. Fragoulopoulou, Topological algebras with involution, North-Holland Mathematics Studies 200, Elsevier, Amsterdam, 2005. · Zbl 1197.46001 [13] J. R. Giles and D. O. Koehler, “On numerical ranges of elements of locally \[m\]-convex algebras”, Pacific J. Math. 49 (1973), 79-91. · Zbl 0237.46051 · doi:10.2140/pjm.1973.49.79 [14] P. Lévy, “Sur la convergence absolue des séries de Fourier”, Compositio Math. 1 (1935), 1-14. · Zbl 0008.31201 [15] A. McIntosh and A. Pryde, “A functional calculus for several commuting operators”, Indiana Univ. Math. J. 36:2 (1987), 421-439. · Zbl 0694.47015 · doi:10.1512/iumj.1987.36.36024 [16] E. A. Michael, “Locally multiplicatively-convex topological algebras”, pp. 1-81 in Mem. Amer. Math. Soc. 11, Amer. Math. Soc., Providence, RI, 1952. · Zbl 0047.35502 · doi:10.1090/memo/0011 [17] A. J. Pryde, “Functional calculus for noncommuting operators”, pp. 197-205 in Miniconference on operators in analysis, edited by I. Doust et al., Proc. Centre Math. Anal. Austral. Nat. Univ. 24, Austral. Nat. Univ., Canberra, 1990. · Zbl 0711.47015 [18] H. Weyl, The theory of groups and quantum mechanics, Dover, New York, 1931. · JFM 58.1374.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.