×

Interpolation over \(\mathbb{Z}\) and torsion in class groups. (English) Zbl 1502.13003

Summary: We prove an interpolation result for homogeneous polynomials over the integers, or more generally for PIDs with finite residue fields. Previous proofs of this result use the well-known but nontrivial fact that class groups of rings of integers are torsion. We provide an independent proof using elementary techniques.

MSC:

13A02 Graded rings
11R29 Class numbers, class groups, discriminants

Software:

Macaulay2
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] J. Bruce and D. Erman, “A probabilistic approach to systems of parameters and Noether normalization”, Algebra Number Theory 13:9 (2019), 2081-2102. · Zbl 1431.13011 · doi:10.2140/ant.2019.13.2081
[2] T. Chinburg, L. Moret-Bailly, G. Pappas, and M. J. Taylor, “Finite morphisms to projective space and capacity theory”, J. Reine Angew. Math. 727 (2017), 69-84. · Zbl 1454.14020 · doi:10.1515/crelle-2014-0089
[3] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, 1995. · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[4] D. Eisenbud, The geometry of syzygies: a second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics 229, Springer, 2005. · Zbl 1066.14001
[5] J. Fresnel and M. Matignon, “Good rings and homogeneous polynomials”, 2019. · Zbl 1510.13002
[6] O. Gabber, Q. Liu, and D. Lorenzini, “Hypersurfaces in projective schemes and a moving lemma”, Duke Math. J. 164:7 (2015), 1187-1270. · Zbl 1432.14002 · doi:10.1215/00127094-2877293
[7] O. Goldman, “On a special class of Dedekind domains”, Topology 3:1 (1964), 113-118. · Zbl 0135.08005 · doi:10.1016/0040-9383(64)90009-6
[8] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available at http://www.math.uiuc.edu/Macaulay2.
[9] International Mathematical Olympiad, “Shortlisted Problems, IMO 2017”, available at https://www.imo-official.org/problems/IMO2017SL.pdf.
[10] D. Khurana, T. Y. Lam, and Z. Wang, “Rings of square stable range one”, J. Algebra 338 (2011), 122-143 · Zbl 1237.19004 · doi:10.1016/j.jalgebra.2011.03.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.