Yaying, Taja; Başar, Feyzi On some Lambda-Pascal sequence spaces and compact operators. (English) Zbl 1502.46015 Rocky Mt. J. Math. 52, No. 3, 1089-1103 (2022). Summary: We introduce Lambda-Pascal sequence spaces \(\ell_q (G), c_0 (G), c(G)\) and \(\ell_\infty (G)\) generated by the matrix \(G\) which is obtained by the product of Pascal matrix and \(\Lambda\)-matrix. It is proved that the Lambda-Pascal sequence spaces \(\ell_q (G), c_0 (G), c(G)\) and \(\ell_\infty (G)\) are BK-spaces and linearly isomorphic to \(\ell_q, c_0, c\) and \(\ell_\infty\), respectively. We construct Schauder bases and obtain \(\alpha\)-, \(\beta\)- and \(\gamma\)-duals of the new spaces. We state and prove characterization theorems related to matrix transformation from the space \(\ell_q (G)\) to the spaces \(\ell_\infty, c\) and \(c_0\). Finally, we determine necessary and sufficient conditions for a matrix operator to be compact from the space \(c_0 (G)\) to any one of the spaces \(\ell_\infty, c, c_0\) or \(\ell_1\). Cited in 2 Documents MSC: 46B45 Banach sequence spaces 46A45 Sequence spaces (including Köthe sequence spaces) 40C05 Matrix methods for summability 47B07 Linear operators defined by compactness properties 47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.) Keywords:sequence space; Pascal matrix; Schauder basis; Köthe duals; matrix mappings; compact operator × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] B. Altay and F. Başar, “On some Euler sequence spaces of nonabsolute type”, Ukrainian Math. J. 57:1 (2005), 1-17. · Zbl 1096.46011 · doi:10.1007/s11253-005-0168-9 [2] B. Altay, F. Başar, and M. Mursaleen, “On the Euler sequence spaces which include the spaces \[\ell_p\] and \[\ell_\infty \], I”, Inform. Sci. 176:10 (2006), 1450-1462. · Zbl 1101.46015 · doi:10.1016/j.ins.2005.05.008 [3] S. Aydın and H. Polat, “Difference sequence spaces derived by using Pascal transform”, Fundam. J. Math. Appl. 2:1 (2019), 56-62. · doi:10.33401/fujma.541721 [4] S. Aydın and H. Polat, “Some Pascal spaces of difference sequence spaces of order \[m\]”, Conf. Proc. Sci. Technol. 2:1 (2019), 97-103. [5] R. Brawer, “Potenzen der Pascalmatrix und eine Identität der Kombinatorik”, Elem. Math. 45:4 (1990), 107-110. · Zbl 0699.05007 [6] A. Das and B. Hazarika, “Some new Fibonacci difference spaces of non-absolute type and compact operators”, Linear Multilinear Algebra 65:12 (2017), 2551-2573. · Zbl 1431.46004 · doi:10.1080/03081087.2017.1278738 [7] A. Das, B. Hazarika, E. E. Kara, and F. Başar, “On composition operators of Fibonacci matrix and applications of Hausdorff measure of noncompactness”, Bol. Soc. Paran. Mat. 40:2022 (2022), 1-24. · Zbl 07801798 · doi:10.5269/bspm.39960 [8] S. Dutta and P. Baliarsingh, “On some Toeplitz matrices and their inversions”, J. Egyptian Math. Soc. 22:3 (2014), 420-423. · Zbl 1314.40009 · doi:10.1016/j.joems.2013.10.001 [9] A. Edelman and G. Strang, “Pascal matrices”, Amer. Math. Monthly 111:3 (2004), 189-197. · Zbl 1089.15025 · doi:10.2307/4145127 [10] K.-G. Grosse-Erdmann, “Matrix transformations between the sequence spaces of Maddox”, J. Math. Anal. Appl. 180:1 (1993), 223-238. · Zbl 0791.47029 · doi:10.1006/jmaa.1993.1398 [11] A. M. Jarrah and E. Malkowsky, “Ordinary, absolute and strong summability and matrix transformations”, Filomat 17 (2003), 59-78. · Zbl 1274.40001 · doi:10.2298/fil0317059j [12] V. Karakaya and N. Şimşek, “On some properties of new paranormed sequence space of nonabsolute type”, Abstr. Appl. Anal. 2012 (2012), art. id. 921613. · Zbl 1254.46009 · doi:10.1155/2012/921613 [13] V. Karakaya, A. K. Noman, and H. Polat, “On paranormed \[\lambda \]-sequence spaces of non-absolute type”, Math. Comput. Modelling 54:5-6 (2011), 1473-1480. · Zbl 1228.40004 · doi:10.1016/j.mcm.2011.04.019 [14] C. G. Lascarides and I. J. Maddox, “Matrix transformations between some classes of sequences”, Proc. Cambridge Philos. Soc. 68 (1970), 99-104. · Zbl 0193.41102 · doi:10.1017/s0305004100001109 [15] G. H. Lawden, “Pascal matrices”, Math. Gaz. 56:398 (1972), 325-327. · Zbl 0355.15016 · doi:10.2307/3617843 [16] E. Malkowsky and V. Rakočević, “An introduction into the theory of sequence spaces and measures of noncompactness”, Zb. Rad. (Beogr.) 9:17 (2000), 143-234. · Zbl 0996.46006 · doi:10.1006/dspr.1999.0346 [17] M. Mursaleen and A. K. Noman, “Compactness by the Hausdorff measure of noncompactness”, Nonlinear Anal. 73:8 (2010), 2541-2557. · Zbl 1211.47061 · doi:10.1016/j.na.2010.06.030 [18] M. Mursaleen and A. K. Noman, “On the spaces of \[\lambda \]-convergent and bounded sequences”, Thai J. Math. 8:2 (2010), 311-329. · Zbl 1195.70022 · doi:10.1007/s12346-010-0011-z [19] M. Mursaleen and A. K. Noman, “On some new sequence spaces of non-absolute type related to the spaces \[\ell_p\] and \[\ell_\infty \], I”, Filomat 25:2 (2011), 33-51. · Zbl 1265.46011 · doi:10.2298/FIL1102033M [20] H. Polat, “Some new Pascal sequence spaces”, Fundam. J. Math. Appl. 1:1 (2018), 61-68. · doi:10.33401/fujma.409932 [21] M. Stieglitz and H. Tietz, “Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht”, Math. Z. 154:1 (1977), 1-16. · Zbl 0331.40005 · doi:10.1007/BF01215107 [22] A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies 85, North-Holland Publishing Co., Amsterdam, 1984. · Zbl 0531.40008 [23] T. Yaying, A. Das, B. Hazarika, and P. Baliarsingh, “Compactness of binomial difference operator of fractional order and sequence spaces”, Rend. Circ. Mat. Palermo (2) 68:3 (2019), 459-476. · Zbl 1444.46005 · doi:10.1007/s12215-018-0372-8 [24] T. Yaying, B. Hazarika, and M. Et, “Matrix mappings and Hausdorff measure of non-compactness on Riesz difference spaces of fractional order”, J. Anal. 29:4 (2021), 1443-1460. · Zbl 1491.46008 · doi:10.1007/s41478-021-00321-w [25] T. Yaying, B. Hazarika, and A. Esi, “Geometric properties and compact operators on fractional Riesz difference space”, Kragujevac J. Math. 47:4 (2023), 545-566. · Zbl 07891029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.