×

Fixed point theorems of generalized contraction mappings on \(\varpi\)-cone metric spaces over Banach algebras. (English) Zbl 1502.54018

Summary: Without the assumptions of normality and solidness, we investigate some properties of cones with some semiinterior points in normed algebras, introduce two novel notions of \(S\)-set and \(S\)-number associated with every semiinterior point in the underlying cone, give a constructive example with calculations of these new quantities, study some topological characterization of the topology induced by \(\varpi\)-cone metric of \(\varpi\)-cone metric space over Banach algebra with the help of semiinterior points instead of interior points, and then generalize some fixed point theorems of contraction type mapping defined on \(\varpi\)-cone metric space over Banach algebra with nonnormal and nonsolid cone.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces

References:

[1] S. M. A. Abou Bakr, “A study on common fixed point of joint \[(A\,;B)\] generalized cyclic \[\phi-abc\] weak nonexpansive mappings and generalized cyclic \[abc\,; r\] contractions in quasi metric spaces”, Abstr. Appl. Anal. (2020), Art. ID 9427267, 10. · Zbl 1474.54122 · doi:10.1155/2020/9427267
[2] S. M. A. Abou Bakr, “Theta cone metric spaces and some fixed point theorems”, J. Math. (2020), Art. ID 8895568, 7. · Zbl 1489.54074 · doi:10.1155/2020/8895568
[3] S. M. A. Abou Bakr, “Coupled fixed point theorems for some type of contraction mappings in \[b\]-cone and \[b\]-theta cone metric spaces”, J. Math. (2021), Art. ID 5569674, 9. · Zbl 1477.54058 · doi:10.1155/2021/5569674
[4] S. M. A. Abou Bakr, “On various types of cone metric spaces and some applications in fixed point theory”, 2022. To appear in International Journal of Nonlinear Analysis and Applications, Art. ID IJNAA-2108-2715.
[5] A. Al-Rawashdeh, W. Shatanawi, and M. Khandaqji, “Normed ordered and \[E\]-metric spaces”, Int. J. Math. Math. Sci. (2012), Art. ID 272137, 11. · Zbl 1241.54029 · doi:10.1155/2012/272137
[6] S. Aleksić, Z. Kadelburg, Z. D. Mitrović, and S. Radenović, “A new survey: cone metric spaces”, J. Int. Math. Virtual Inst. 9 (2019), 93-121. · Zbl 1474.54102
[7] A. Amini-Harandi and M. Fakhar, “Fixed point theory in cone metric spaces obtained via the scalarization method”, Comput. Math. Appl. 59:11 (2010), 3529-3534. · Zbl 1197.54055 · doi:10.1016/j.camwa.2010.03.046
[8] S. M. A. A. Bakr, “Cyclic \[G-\Omega \]-weak contraction-weak nonexpansive mappings and some fixed point theorems in metric spaces”, Abstr. Appl. Anal. (2021), Art. ID 6642564, 9. · Zbl 1482.54052 · doi:10.1155/2021/6642564
[9] A. Basile, M. G. Graziano, M. Papadaki, and I. A. Polyrakis, “Cones with semi-interior points and equilibrium”, J. Math. Econom. 71 (2017), 36-48. · Zbl 1394.91267 · doi:10.1016/j.jmateco.2017.03.002
[10] H. Çakalli, A. Sönmez, and c. Genç, “On an equivalence of topological vector space valued cone metric spaces and metric spaces”, Appl. Math. Lett. 25:3 (2012), 429-433. · Zbl 1245.54038 · doi:10.1016/j.aml.2011.09.029
[11] W.-S. Du, “A note on cone metric fixed point theory and its equivalence”, Nonlinear Anal. 72:5 (2010), 2259-2261. · Zbl 1205.54040 · doi:10.1016/j.na.2009.10.026
[12] W.-S. Du and E. Karapi nar, “A note on cone \[b\]-metric and its related results: generalizations or equivalence?”, Fixed Point Theory Appl. (2013), 2013:210, 7. · Zbl 1293.54021 · doi:10.1186/1687-1812-2013-210
[13] E. El-Shobaky, S. M. Ali, and M. S. Ali, “Generalization of Banach contraction principle in two directions”, J. Math. Stat. 3:3 (2007), 112-115. · doi:10.3844/jmssp.2007.112.115
[14] Y. Feng and W. Mao, “The equivalence of cone metric spaces and metric spaces”, Fixed Point Theory 11:2 (2010), 259-263. · Zbl 1221.54055
[15] H. Huang and S. Radenović, “Some fixed point results of generalized Lipschitz mappings on cone \[b\]-metric spaces over Banach algebras”, J. Comput. Anal. Appl. 20:3 (2016), 566-583. · Zbl 1353.54039
[16] H. Huang and S. Xu, “Fixed point theorems of contractive mappings in cone \[b\]-metric spaces and applications”, Fixed Point Theory Appl. (2013), 2013:112, 10. · Zbl 1423.54081 · doi:10.1186/1687-1812-2013-112
[17] L.-G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl. 332:2 (2007), 1468-1476. · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[18] H. Huang, Z. Kadelburg, and S. Radenović, “A note on some recent results about multivalued mappings in \[tvs\]-cone metric spaces”, J. Adv. Math. Stud. 9:2 (2016), 330-337. · Zbl 1353.54038
[19] H. Huang, G. Deng, and S. Radenović, “Some topological properties and fixed point results in cone metric spaces over Banach algebras”, Positivity 23:1 (2019), 21-34. · Zbl 1482.54063 · doi:10.1007/s11117-018-0590-5
[20] S. Janković, Z. Kadelburg, and S. Radenović, “On cone metric spaces: a survey”, Nonlinear Anal. 74:7 (2011), 2591-2601. · Zbl 1221.54059 · doi:10.1016/j.na.2010.12.014
[21] Z. Kadelburg and S. Radenović, “A note on various types of cones and fixed point results in cone metric spaces”, Asian Journal of Mathematics and Applications 2013 (2013), Art. ID ama0104.
[22] Z. Kadelburg, S. Radenović, and V. Rakočević, “A note on the equivalence of some metric and cone metric fixed point results”, Appl. Math. Lett. 24:3 (2011), 370-374. · Zbl 1213.54067 · doi:10.1016/j.aml.2010.10.030
[23] P. Kumam, N. V. Dung, and V. T. L. Hang, “Some equivalences between cone \[b\]-metric spaces and \[b\]-metric spaces”, Abstr. Appl. Anal. (2013), Art. ID 573740, 8. · Zbl 1292.54027 · doi:10.1155/2013/573740
[24] Z. Li and S. Jiang, “Common fixed point theorems of contractions in partial cone metric spaces over nonnormal cones”, Abstr. Appl. Anal. (2014), Art. ID 653841, 8. · Zbl 1474.54195 · doi:10.1155/2014/653841
[25] H. Liu and S. Xu, “Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings”, Fixed Point Theory Appl. (2013), 2013:320, 10. · Zbl 1295.54062 · doi:10.1186/1687-1812-2013-320
[26] N. Mehmood, A. Al Rawashdeh, and S. Radenović, “New fixed point results for \[E\]-metric spaces”, Positivity 23:5 (2019), 1101-1111. · Zbl 1516.54038 · doi:10.1007/s11117-019-00653-9
[27] S. Mohamed Ali Abou Bakr, “Coupled fixed-point theorems in theta-cone-metric spaces”, J. Math. (2021), Art. ID 6617738, 7. · Zbl 1477.54058 · doi:10.1155/2021/6617738
[28] S. Rezapour and R. H. Haghi, “Fixed point of multifunctions on cone metric spaces”, Numer. Funct. Anal. Optim. 30:7-8 (2009), 825-832. · Zbl 1171.54033 · doi:10.1080/01630560903123346
[29] S. Rezapour and R. Hamlbarani, “Some notes on the paper: “Cone metric spaces and fixed point theorems of contractive mappings” [J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476; MR2324351] by L.-G. Huang and X. Zhang”, J. Math. Anal. Appl. 345:2 (2008), 719-724. · Zbl 1145.54045 · doi:10.1016/j.jmaa.2008.04.049
[30] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. · Zbl 0253.46001
[31] N. Sharma, “Fixed point theorem in cone \[B\] metric spaces using contractive mappings”, Global Journal of Pure and Applied Mathematics 13:7 (2017), 2997-3004.
[32] L. Shi and S. Xu, “Common fixed point theorems for two weakly compatible self-mappings in cone \[b\]-metric spaces”, Fixed Point Theory Appl. (2013), 2013:120, 11. · Zbl 1429.54059 · doi:10.1186/1687-1812-2013-120
[33] S. Xu and S. Radenović, “Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality”, Fixed Point Theory Appl. (2014), 2014:102, 12. · Zbl 1338.54235 · doi:10.1186/1687-1812-2014-102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.