Ioffe, Dmitry; Ott, Sébastien; Shlosman, Senya; Velenik, Yvan Critical prewetting in the 2d Ising model. (English) Zbl 1502.60156 Ann. Probab. 50, No. 3, 1127-1172 (2022). Summary: In this paper, we develop a detailed analysis of critical prewetting in the context of the two-dimensional Ising model. Namely, we consider a two-dimensional nearest-neighbor Ising model in a \(2N\times N\) rectangular box with a boundary condition inducing the coexistence of the + phase in the bulk and a layer of \(-\) phase along the bottom wall. The presence of an external magnetic field of intensity \(h=\lambda /N\) (for some fixed \(\lambda > 0)\) makes the layer of \(-\) phase unstable. For any \(\beta >{\beta_{\text{c}}} \), we prove that, under a diffusing scaling by \({N^{-2/3}}\) horizontally and \({N^{-1/3}}\) vertically, the interface separating the layer of unstable phase from the bulk phase weakly converges to an explicit Ferrari-Spohn diffusion. Cited in 9 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics Keywords:critical prewetting; Ferrari-Spohn diffusion; interface; invariance principle; Ising model; Ferrari-Spohn diffusion × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Abraham, D. B. and Smith, E. R. (1986). An exactly solved model with a wetting transition. J. Stat. Phys. 43 621-643. · doi:10.1007/BF01020656 [2] BODINEAU, T., IOFFE, D. and VELENIK, Y. (2001). Winterbottom construction for finite range ferromagnetic models: An \[{\mathbb{L}_1} \]-approach. J. Stat. Phys. 105 93-131. · Zbl 1156.82327 · doi:10.1023/A:1012277926007 [3] BRICMONT, J. and LEBOWITZ, J. L. (1987). Wetting in Potts and Blume-Capel models. J. Stat. Phys. 46 1015-1029. · doi:10.1007/BF01011154 [4] Campanino, M., Ioffe, D. and Velenik, Y. (2003). Ornstein-Zernike theory for finite range Ising models above \[{T_c}\]. Probab. Theory Related Fields 125 305-349. · Zbl 1032.60093 · doi:10.1007/s00440-002-0229-z [5] Campanino, M., Ioffe, D. and Velenik, Y. (2008). Fluctuation theory of connectivities for subcritical random cluster models. Ann. Probab. 36 1287-1321. · Zbl 1160.60026 · doi:10.1214/07-AOP359 [6] Caputo, P., Ioffe, D. and Wachtel, V. (2019). Tightness and line ensembles for Brownian polymers under geometric area tilts. In Statistical Mechanics of Classical and Disordered Systems. Springer Proc. Math. Stat. 293 241-266. Springer, Cham. · Zbl 1446.82093 · doi:10.1007/978-3-030-29077-1_10 [7] CAPUTO, P., IOFFE, D. and WACHTEL, V. (2019). Confinement of Brownian polymers under geometric area tilts. Electron. J. Probab. 24 Paper No. 37, 21. · Zbl 1466.60068 · doi:10.1214/19-EJP283 [8] Caputo, P., Lubetzky, E., Martinelli, F., Sly, A. and Toninelli, F. L. (2016). Scaling limit and cube-root fluctuations in SOS surfaces above a wall. J. Eur. Math. Soc. (JEMS) 18 931-995. · Zbl 1344.60091 · doi:10.4171/JEMS/606 [9] CARLON, E., IGLÓI, F., SELKE, W. and SZALMA, F. (1999). Interfacial adsorption in two-dimensional Potts models. J. Stat. Phys. 96 531-543. · Zbl 0934.82021 · doi:10.1023/A:1004542105635 [10] COLANGELI, M., GIARDINÀ, C., GIBERTI, C. and VERNIA, C. (2018). Nonequilibrium two-dimensional Ising model with stationary uphill diffusion. Phys. Rev. E 97 030103. [11] DE CONINCK, J., MESSAGER, A., MIRACLE-SOLÉ, S. and RUIZ, J. (1988). A study of perfect wetting for Potts and Blume-Capel models with correlation inequalities. J. Stat. Phys. 52 45-60. · Zbl 1083.82506 · doi:10.1007/BF01016403 [12] DE MASI, A., IOFFE, D., MEROLA, I. and PRESUTTI, E. (2020). Metastability and uphill diffusion. In preparation. [13] DE MASI, A., MEROLA, I. and OLLA, S. (2020). Interface fluctuations in non equilibrium stationary states: The SOS approximation. J. Stat. Phys. 180 414-426. · Zbl 1445.82008 · doi:10.1007/s10955-019-02450-w [14] DE MASI, A., OLLA, S. and PRESUTTI, E. (2019). A note on Fick’s law with phase transitions. J. Stat. Phys. 175 203-211. · Zbl 1419.82041 · doi:10.1007/s10955-019-02250-2 [15] Ethier, S. N. and Kurtz, T. G. (2009). Markov Processes: Characterization and Convergence 282. John Wiley & Sons. · doi:10.1002/9780470316658 [16] FRÖHLICH, J. and PFISTER, C.-E. (1987). Semi-infinite Ising model. II. The wetting and layering transitions. Comm. Math. Phys. 112 51-74. · Zbl 1108.82302 [17] GANGULY, S. and GHEISSARI, R. (2021). Local and global geometry of the 2D Ising interface in critical prewetting. Ann. Probab. 49 2076-2140. · Zbl 1484.60109 · doi:10.1214/21-aop1505 [18] GIBBS, J. W. (1878). On the equilibrium of heterogeneous substances. Am. J. Sci. Series 3 Vol. 16 441-458. · doi:10.2475/ajs.s3-16.96.441 [19] Greenberg, L. and Ioffe, D. (2005). On an invariance principle for phase separation lines. Ann. Inst. Henri Poincaré Probab. Stat. 41 871-885. · Zbl 1115.60039 · doi:10.1016/j.anihpb.2005.05.001 [20] HRYNIV, O. and KOTECKÝ, R. (2002). Surface tension and the Ornstein-Zernike behaviour for the 2D Blume-Capel model. J. Stat. Phys. 106 431-476. · Zbl 1003.82005 · doi:10.1023/A:1013797920029 [21] Hryniv, O. and Velenik, Y. (2004). Universality of critical behaviour in a class of recurrent random walks. Probab. Theory Related Fields 130 222-258. · Zbl 1078.60034 · doi:10.1007/s00440-004-0353-z [22] IOFFE, D. (2015). Multidimensional random polymers: A renewal approach. In Random Walks, Random Fields, and Disordered Systems. Lecture Notes in Math. 2144 147-210. Springer, Cham. · Zbl 1338.60215 · doi:10.1007/978-3-319-19339-7_4 [23] Ioffe, D., Ott, S., Velenik, Y. and Wachtel, V. (2020). Invariance principle for a Potts interface along a wall. J. Stat. Phys. 180 832-861. · Zbl 1450.60060 · doi:10.1007/s10955-020-02546-8 [24] Ioffe, D. and Schonmann, R. H. (1998). Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Comm. Math. Phys. 199 117-167. · Zbl 0929.60076 · doi:10.1007/s002200050497 [25] IOFFE, D. and SHLOSMAN, S. (2008). Ising model fog drip: The first two droplets. In In and Out of Equilibrium. 2. Progress in Probability 60 365-381. Birkhäuser, Basel. · Zbl 1173.82311 · doi:10.1007/978-3-7643-8786-0_18 [26] IOFFE, D. and SHLOSMAN, S. (2019). Formation of facets for an effective model of crystal growth. In Sojourns in Probability Theory and Statistical Physics—I (V. Sidoravicius, ed.) 199-245. Springer Singapore, Singapore. · Zbl 1446.82080 [27] Ioffe, D., Shlosman, S. and Velenik, Y. (2015). An invariance principle to Ferrari-Spohn diffusions. Comm. Math. Phys. 336 905-932. · Zbl 1323.60055 · doi:10.1007/s00220-014-2277-5 [28] Ioffe, D. and Velenik, Y. (2018). Low-temperature interfaces: Prewetting, layering, faceting and Ferrari-Spohn diffusions. Markov Process. Related Fields 24 487-537. · Zbl 1414.60079 [29] Ioffe, D., Velenik, Y. and Wachtel, V. (2018). Dyson Ferrari-Spohn diffusions and ordered walks under area tilts. Probab. Theory Related Fields 170 11-47. · Zbl 1405.60146 · doi:10.1007/s00440-016-0751-z [30] MESSAGER, A., MIRACLE-SOLÉ, S., RUIZ, J. and SHLOSMAN, S. (1991). Interfaces in the Potts model. II. Antonov’s rule and rigidity of the order disorder interface. Comm. Math. Phys. 140 275-290. · Zbl 0734.60109 [31] OTT, S. and VELENIK, Y. (2018). Potts models with a defect line. Comm. Math. Phys. 362 55-106. · Zbl 1398.82030 · doi:10.1007/s00220-018-3197-6 [32] PFISTER, C.-E. and VELENIK, Y. (1996). Mathematical theory of the wetting phenomenon in the 2D Ising model. Helv. Phys. Acta 69 949-973. · Zbl 0882.60096 [33] Pfister, C.-E. and Velenik, Y. (1997). Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields 109 435-506. · Zbl 0904.60022 · doi:10.1007/s004400050139 [34] Pfister, C.-E. and Velenik, Y. (1999). Interface, surface tension and reentrant pinning transition in the 2D Ising model. Comm. Math. Phys. 204 269-312. · Zbl 0937.82016 · doi:10.1007/s002200050646 [35] Schonmann, R. H. and Shlosman, S. B. (1996). Constrained variational problem with applications to the Ising model. J. Stat. Phys. 83 867-905. · Zbl 1081.82547 · doi:10.1007/BF02179548 [36] Velenik, Y. (2004). Entropic repulsion of an interface in an external field. Probab. Theory Related Fields 129 83-112 · Zbl 1078.60088 · doi:10.1007/s00440-003-0328-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.