Hirpho, Mohammed Numerical solution of the heat transfer equation coupled with the Darcy flow using the finite element method. (English) Zbl 1502.65123 Abstr. Appl. Anal. 2022, Article ID 5108445, 9 p. (2022). Summary: The finite element approach was utilized in this study to solve numerically the two-dimensional time-dependent heat transfer equation coupled with the Darcy flow. The Picard-Lindelöf Theorem was used to prove the existence and uniqueness of the solution. The prior and posterior error estimates are then derived for the numerical scheme. Numerical examples were provided to show the effectiveness of the theoretical results. The essential code development in this study was done using MATLAB computer simulation. MSC: 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 35K05 Heat equation 80M20 Finite difference methods applied to problems in thermodynamics and heat transfer Keywords:finite element approach; heat transfer equation; Darcy flow; Picard-Lindelöf theorem Software:Matlab × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Birhanu, Z. K.; Kitterød, N.-O.; Krogstad, H.; Kværnø, A., Analytical and numerical solutions of radially symmetric aquifer thermal energy storage problems, Hydrology and Earth System Sciences Discussions, 1-19 (2017) · doi:10.5194/hess-2017-303 [2] Hirpho, M.; Ibrahim, W., Dynamics of flow in trapezoidal enclosure having a heated inner circular cylinder containing Casson nanofluid, Heliyon, 7, 7, article e07683 (2021) · doi:10.1016/j.heliyon.2021.e07683 [3] Bernardi, C.; Métivet, B.; Pernaud-Thomas, P., Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis, ESAIM Math. Model, Numer. Anal. Mathématique Anal. Numérique, 29, 871-921 (1995) · Zbl 0839.76016 [4] Tobe, M. H.; Birhanu, Z. K., Numerical investigation of temperature distribution in a homogeneous aquifer thermal energy storage system during thermal injection process, American Journal of Applied Mathematics, 8, 3, 89-97 (2020) · doi:10.11648/j.ajam.20200803.13 [5] Deteix, J.; Jendoubi, A.; Yakoubi, D., A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations, SIAM Journal on Numerical Analysis, 52, 5, 2415-2439 (2014) · Zbl 1307.76072 · doi:10.1137/130942516 [6] Lezaun, M. G. E. T. M., Equations de Navier-Stokes couplées à des équations de la chaleur: résolution par une méthode de point fixe en dimension infinie, Ann. Sc. Math. Québec, 13, 1-17 (1989) · Zbl 0716.35064 [7] Ibrahim, W.; Hirpho, M., Finite element analysis of mixed convection flow in a trapezoidal cavity with non-uniform temperature, Heliyon, 7, 1, article e05933 (2021) · doi:10.1016/j.heliyon.2021.e05933 [8] Hirpho, M., Mixed convection of Casson fluid in a differentially heated bottom wavy wall, Heliyon, 7, 6, article e07361 (2021) · doi:10.1016/j.heliyon.2021.e07361 [9] Bernardi, C.; Maarouf, S.; Yakoubi, D., Spectral discretization of Darcy’s equations coupled with the heat equation, IMA Journal of Numerical Analysis, 36, 3, 1193-1216 (2016) · Zbl 1433.76121 · doi:10.1093/imanum/drv047 [10] Boussinesq, J., Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Tome II: Refroidissement et échauffement par rayonnement, 625 (1903), Gauthier-Villars [11] Ganapathy, R.; Mohan, A., Free convective Darcy flow induced by a temperature gradient in a hemispherical porous medium, Alexandria Engineering Journal, 57, 3, 2035-2042 (2018) · doi:10.1016/j.aej.2017.05.015 [12] He, Y.; Huang, T.; Tan, M., Coupled calculation of heat and mass transfer of porous media under the effects of external energy sources, Chemical Engineering Transactions, 62, 337-342 (2017) [13] Teskeredžić, A.; Demirdžić, I.; Muzaferija, S., Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems, Numerical Heat Transfer: Part B: Fundamentals, 42, 5, 437-459 (2002) · doi:10.1080/10407790190054021 [14] Ahmad, F.; Almatroud, A. O.; Hussain, S.; Farooq, S. E.; Ullah, R., Numerical solution of nonlinear diff. equations for heat transfer in micropolar fluids over a stretching domain, Mathematics, 8, 5, 854 (2020) · doi:10.3390/math8050854 [15] El-Hakiem, M. A.; Ahmad, F.; Hussain, S., Effect of magnetic field and double dispersion on mixed convection heat and mass transfer in non-Darcy porous medium, Science International, 27 (2014) [16] Mansour, M. A.; El-Shaer, N. A., Effect of magnetic field on non-Darcy axisymmetric free convection in a power-law fluid saturated porous medium with variable permeability, Journal of Magnetism and Magnetic Materials, 250, 57-64 (2002) · doi:10.1016/S0304-8853(02)00354-2 [17] Evans, G.; Blackledge, J.; Yardley, P., Numerical Methods for Partial Differential Equations (2012), Springer Science & Business Media · Zbl 0933.35001 [18] Li, Z.; Qiao, Z.; Tang, T., Numerical solution of partial differential equations-an introduction to finite difference and finite element methods (2011), Center for research and scientific comput. & Department of mathematics, North Carolina State University [19] Zulehner, W., Lecture Notes for the Course Numerical Methods for Partial Differential Equations (2006), Institute for Computational Mathematics, Johannes Kepler University Linzand [20] Arnold, D. N., Lecture Notes on Numerical Analysis of Partial Differential Equations (2012), University of Minnesota This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.