×

Stillman’s question for twisted commutative algebras. (English) Zbl 1503.13004

Summary: Let \(\mathbb{A}_{n, m}\) be the polynomial ring \(\mathrm{Sym}(\mathbb{C}^n \otimes \mathbb{C}^m)\) with the natural action of \(\mathrm{GL}_m (\mathbb{C})\). We consider a family of \(\mathrm{GL}_m (\mathbb{C})\)-stable ideals \(J_{n, m}\) in \(\mathbb{A}_{n, m}\), each equivariantly generated by one homogeneous polynomial of degree 2 and show that the regularity of this family is unbounded. Using this, we negatively answer a question raised by D. Erman et al. [Int. Math. Res. Not. 2021, No. 16, 12281–12304 (2021; Zbl 1495.13026)] on a generalization of Stillman’s conjecture.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
13D02 Syzygies, resolutions, complexes and commutative rings

Citations:

Zbl 1495.13026

Software:

Macaulay2; SINGULAR
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] T. Ananyan and M. Hochster, “Small subalgebras of polynomial rings and Stillman’s conjecture”, J. Amer. Math. Soc. 33:1 (2020), 291-309. · Zbl 1439.13037 · doi:10.1090/jams/932
[2] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 4-1-1: A computer algebra system for polynomial computations”, software, available at http://www.singular.uni-kl.de. · Zbl 1344.13002
[3] J. Draisma, “Topological Noetherianity of polynomial functors”, J. Amer. Math. Soc. 32:3 (2019), 691-707. · Zbl 1439.13044 · doi:10.1090/jams/923
[4] D. Erman, S. V. Sam, and A. Snowden, “Big polynomial rings and Stillman’s conjecture”, Invent. Math. 218:2 (2019), 413-439. · Zbl 1427.13018 · doi:10.1007/s00222-019-00889-y
[5] D. Erman, S. V. Sam, and A. Snowden, “Generalizations of Stillman’s conjecture via twisted commutative algebra”, Int. Math. Res. Not. 2021:16 (2021), 12281-12304. · Zbl 1495.13026 · doi:10.1093/imrn/rnz123
[6] D. R. Grayson and M. E. Stillman, “Macaulay2: A software system for research in algebraic geometry”, software, available at http://www.math.uiuc.edu/Macaulay2.
[7] J. McCullough, “Stillman’s question for exterior algebras and Herzog’s conjecture on Betti numbers of syzygy modules”, J. Pure Appl. Algebra 223:2 (2019), 634-640. · Zbl 1410.13010 · doi:10.1016/j.jpaa.2018.04.012
[8] J. McCullough and A. Seceleanu, “Bounding projective dimension”, pp. 551-576 in Commutative algebra, Springer, 2013. · Zbl 1282.13029 · doi:10.1007/978-1-4614-5292-8_17
[9] S. V. Sam and A. Snowden, “Introduction to twisted commutative algebras”, 2012.
[10] S. V. Sam and A. Snowden, “GL-equivariant modules over polynomial rings in infinitely many variables, II”, Forum Math. Sigma 7 (2019), art. id. e5. · Zbl 1441.16008 · doi:10.1017/fms.2018.27
[11] S. V. Sam, A. Snowden, and J. Weyman, “Homology of Littlewood complexes”, Selecta Math. (N.S.) 19:3 (2013), 655-698 · Zbl 1269.05117 · doi:10.1007/s00029-013-0119-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.