×

Recurrence and windings of two revolving random walks. (English) Zbl 1503.60054

In this paper, the authors study asymptotic properties and windings behaviors of two oriented random walks, (thus) non-reversible and non-elliptic, which are both bound to revolve clockwise on the plane but show different asymptotic behaviors. They only differ by the possible transitions on the horizontal axis but this is enough to get a distinction recurrence vs. transience, which in turns manifests itself into different windings behaviors. The proofs are based on the derivation of limit theorems for specific random times of auxiliary random walks, using among others standard probability results as the Chung-Feller theorem, conditional Markov estimates, rates of decays for return probabilities, Lyapunov functions, etc. The authors also obtain scaling limits of the random walks and of corresponding windings.

MSC:

60G50 Sums of independent random variables; random walks
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

References:

[1] Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992, Reprint of the 1972 edition.
[2] Claude Bélisle, Windings of random walks, Ann. Probab. 17 (1989), no. 4, 1377-1402. · Zbl 0693.60020
[3] Claude Bélisle and Julian Faraway, Winding angle and maximum winding angle of the two-dimensional random walk, J. Appl. Probab. 28 (1991), no. 4, 717-726. · Zbl 0748.60057
[4] Jean Bertoin and Wendelin Werner, Stable windings, Ann. Probab. 24 (1996), no. 3, 1269-1279. · Zbl 0867.60045
[5] Julien Brémont, Markov chains in a stratified environment, ALEA Lat. Am. J. Probab. Math. Stat. 14 (2017), no. 2, 751-798. · Zbl 1372.60102
[6] Julien Brémont, Planar random walk in a stratified quasi-periodic environment, Markov Process. Related Fields 27 (2021), no. 5, 755-788. · Zbl 1495.60066
[7] Timothy Budd, Winding of simple walks on the square lattice, J. Combin. Theory Ser. A 172 (2020), 105191, 59. · Zbl 1471.60064
[8] M. Campanino and D. Petritis, Random walks on randomly oriented lattices, Markov Process. Related Fields 9 (2003), no. 3, 391-412. · Zbl 1057.60069
[9] Massimo Campanino and Dimitri Petritis, On the physical relevance of random walks: an example of random walks on a randomly oriented lattice, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 393-411. · Zbl 1057.60096
[10] Massimo Campanino and Dimitri Petritis, Type transition of simple random walks on randomly directed regular lattices, J. Appl. Probab. 51 (2014), no. 4, 1065-1080. · Zbl 1310.60048
[11] Fabienne Castell, Nadine Guillotin-Plantard, Françoise Pène, and Bruno Schapira, A local limit theorem for random walks in random scenery and on randomly oriented lattices, Ann. Probab. 39 (2011), no. 6, 2079-2118. · Zbl 1238.60028
[12] Alexis Devulder and Françoise Pène, Random walk in random environment in a two-dimensional stratified medium with orientations, Electron. J. Probab. 18 (2013), no. 18, 23. · Zbl 1283.60058
[13] Rick Durrett, Probability—theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49, Cambridge University Press, Cambridge, 2019, Fifth edition of [MR1068527]. · Zbl 1440.60001
[14] P. Erdős and S. J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar. 11 (1960), 137-162. (unbound insert). · Zbl 0091.13303
[15] William Feller, An introduction to probability theory and its applications. Vol. I, third ed., John Wiley & Sons, Inc., New York-London-Sydney, 1968. · Zbl 0155.23101
[16] N. Guillotin-Plantard and A. Le Ny, Transient random walks on 2D-oriented lattices, Teor. Veroyatn. Primen. 52 (2007), no. 4, 815-826. · Zbl 1180.60039
[17] Nadine Guillotin-Plantard and Arnaud Le Ny, A functional limit theorem for a 2D-random walk with dependent marginals, Electron. Commun. Probab. 13 (2008), 337-351. · Zbl 1189.60066
[18] Mark Holmes and Thomas S. Salisbury, Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment, Electron. J. Probab. 22 (2017), Paper No. 81, 18. · Zbl 1386.60329
[19] Aminul Huq, Generalized Chung-Feller theorems for lattice paths, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.)-Brandeis University.
[20] J. H. B. Kemperman, The oscillating random walk, Stochastic Process. Appl. 2 (1974), 1-29. · Zbl 0326.60081
[21] Gregory F. Lawler and Vlada Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010. · Zbl 1210.60002
[22] Jean-François Le Gall, Brownian motion, martingales, and stochastic calculus, french ed., Graduate Texts in Mathematics, vol. 274, Springer, [Cham], 2016. · Zbl 1378.60002
[23] Sean Ledger, Bálint Tóth, and Benedek Valkó, Random walk on the randomly-oriented Manhattan lattice, Electron. Commun. Probab. 23 (2018), Paper No. 43, 11. · Zbl 1397.82046
[24] G Matheron and G De Marsily, Is transport in porous media always diffusive? a counterexample, Water resources research 16 (1980), no. 5, 901-917.
[25] Mikhail Menshikov, Serguei Popov, and Andrew Wade, Non-homogeneous random walks, Cambridge Tracts in Mathematics, vol. 209, Cambridge University Press, Cambridge, 2017, Lyapunov function methods for near-critical stochastic systems. · Zbl 1376.60005
[26] Mikhail V. Menshikov, Dimitri Petritis, and Andrew R. Wade, Heavy-tailed random walks on complexes of half-lines, J. Theoret. Probab. 31 (2018), no. 3, 1819-1859. · Zbl 1404.60060
[27] P. Messulam and M. Yor, On D. Williams’ “pinching method” and some applications, J. London Math. Soc. (2) 26 (1982), no. 2, 348-364. · Zbl 0518.60088
[28] Françoise Pène, Transient random walk in \[{\mathbb{Z}^2} \]with stationary orientations, ESAIM Probab. Stat. 13 (2009), 417-436. · Zbl 1180.60060
[29] Françoise Pène, Random walks in random sceneries and related models, Journées MAS 2018—sampling and processes, ESAIM Proc. Surveys, vol. 68, EDP Sci., Les Ulis, 2020, pp. 35-51. · Zbl 1446.76140
[30] V. V. Petrov, Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82, Springer-Verlag, New York-Heidelberg, 1975, Translated from the Russian by A. A. Brown. · Zbl 0322.60042
[31] Jim Pitman and Marc Yor, Asymptotic laws of planar Brownian motion, Ann. Probab. 14 (1986), no. 3, 733-779. · Zbl 0607.60070
[32] Pál Révész, Random walk in random and non-random environments, third ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. · Zbl 1283.60007
[33] Bruno Schapira and Robert Young, Windings of planar random walks and averaged Dehn function, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 1, 130-147. · Zbl 1397.60083
[34] Zhan Shi, Windings of Brownian motion and random walks in the plane, Ann. Probab. 26 (1998), no. 1, 112-131. · Zbl 0938.60073
[35] Frank Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187-197. · Zbl 0089.13601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.