×

Upper bounds on number fields of given degree and bounded discriminant. (English) Zbl 1504.11121

The authors give an upper bound for the number \(N_n(X)\) of number fields of degree \(n\) with discriminant bounded by \(X\): \(N_n(X) =O(X^{c(\log n)^2})\) for an explicit constant \(c\). The authors improve previous results of many authors. Their strategy follows the ideas of J. S. Ellenberg and A. Venkatesh [Ann. Math. (2) 163, No. 2, 723–741 (2006; Zbl 1099.11068)], and of J.-M. Couveignes [Ann. Math. (2) 192, No. 2, 487–497 (2020; Zbl 1454.11190)].

MSC:

11R29 Class numbers, class groups, discriminants

Software:

PARI/GP

References:

[1] J. ALEXANDER and A. HIRSCHOWITZ, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995) no. 2, 201-222. · Zbl 0829.14002
[2] M. BHARGAVA, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031-1063. · Zbl 1159.11045 · doi:10.4007/annals.2005.162.1031
[3] M. BHARGAVA, The density of discriminants of quintic rings and fields, Ann. of Math. (2) 172 (2010) no. 3, 1559-1591. · Zbl 1220.11139 · doi:10.4007/annals.2010.172.1559
[4] M. C. BRAMBILLA and G. OTTAVIANI, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra 212 (2008), no. 5, 1229-1251. · Zbl 1139.14007 · doi:10.1016/j.jpaa.2007.09.014
[5] M. BHARGAVA, A. SHANKAR, T. TANIGUCHI, F. THORNE, J. TSIMERMAN, and Y. ZHAO, Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves, J. Amer. Math. Soc. 33 (2020), no. 4, 1087-1099. · Zbl 1456.11101 · doi:10.1090/jams/945
[6] H. COHEN, F. DIAZ Y DIAZ, and M. OLIVIER, Enumerating quartic dihedral extensions of \[ \mathbb{Q} \], Compositio Math. 133 (2002), no. 1, 65-93. · Zbl 1050.11104 · doi:10.1023/A:1016310902973
[7] J.-M. COUVEIGNES, Enumerating number fields, Ann. of Math. (2) 192 (2020), no. 2, 487-497. · Zbl 1454.11190 · doi:10.4007/annals.2020.192.2.4
[8] H. DAVENPORT and H. HEILBRONN, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405-420. · Zbl 0212.08101 · doi:10.1098/rspa.1971.0075
[9] E. P. DUMMIT, Counting G-extensions by discriminant, Math. Res. Lett. 25 (2018), no. 4, 1151-1172. · Zbl 1444.11213 · doi:10.4310/MRL.2018.v25.n4.a5
[10] J. S. ELLENBERG and A. VENKATESH. The number of extensions of a number field with fixed degree and bounded discriminant, Ann. of Math. (2) 163 (2006), no. 2, 723-741. · Zbl 1099.11068 · doi:10.4007/annals.2006.163.723
[11] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, New York-Heidelberg, 1977. · Zbl 0367.14001
[12] DAVID MUMFORD, The Red Book of Varieties and Schemes, expanded ed., Lecture Notes in Mathematics 1358, Springer, Berlin, 1999. · Zbl 0945.14001 · doi:10.1007/b62130
[13] THE PARI GROUP, PARI/GP version 2.8.0, Univeristy of Bordeaux, 2015.
[14] WOLFGANG M. SCHMIDT, “Number fields of given degree and bounded discriminant” in Columbia University Number Theory Seminar (New York, 1992), Astérisque 228, Soc. Math. France, Paris, 1995, 189-195. · Zbl 0827.11069
[15] USER 940, Elementary central binomial coefficient estimates, Mathematics Stack Exchange, 2012, https://math.stackexchange.com/q/58562.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.