Dumaz, Laure; Labbé, Cyril The stochastic Airy operator at large temperature. (English) Zbl 1504.35204 Ann. Appl. Probab. 32, No. 6, 4481-4534 (2022). Summary: It was shown in [J. A. Ramírez et al., J. Am. Math. Soc. 24, No. 4, 919–944 (2011; Zbl 1239.60005)] that the edge of the spectrum of \(\beta\) ensembles converges in the large \(N\) limit to the bottom of the spectrum of the stochastic Airy operator. In the present paper, we obtain a complete description of the bottom of this spectrum when the temperature \(1/\beta\) goes to \(\infty\): we show that the point process of appropriately rescaled eigenvalues converges to a Poisson point process on R of intensity \({e^x}\mathrm{d}x\) and that the eigenfunctions converge to Dirac masses centered at i.i.d. points with exponential laws. Furthermore, we obtain a precise description of the microscopic behavior of the eigenfunctions near their localization centers. MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 35R60 PDEs with randomness, stochastic partial differential equations 60H25 Random operators and equations (aspects of stochastic analysis) 60J60 Diffusion processes Keywords:beta ensemble; diffusion; localization; Riccati transform; stochastic Airy operator Citations:Zbl 1239.60005 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] ALLEZ, R. and DUMAZ, L. (2014). Tracy-Widom at high temperature. J. Stat. Phys. 156 1146-1183. · Zbl 1309.82019 · doi:10.1007/s10955-014-1058-z [2] BENAYCH-GEORGES, F. and PÉCHÉ, S. (2015). Poisson statistics for matrix ensembles at large temperature. J. Stat. Phys. 161 633-656. · Zbl 1329.82055 · doi:10.1007/s10955-015-1340-8 [3] BORODIN, A. N. and SALMINEN, P. (2002). Handbook of Brownian Motion—Facts and Formulae, 2nd ed. Probability and Its Applications. Birkhäuser, Basel. · Zbl 1012.60003 · doi:10.1007/978-3-0348-8163-0 [4] Dumaz, L. and Labbé, C. (2020). Localization of the continuous Anderson Hamiltonian in 1-D. Probab. Theory Related Fields 176 353-419. · Zbl 1444.60072 · doi:10.1007/s00440-019-00920-6 [5] DUMITRIU, I. and EDELMAN, A. (2002). Matrix models for beta ensembles. J. Math. Phys. 43 5830-5847. · Zbl 1060.82020 · doi:10.1063/1.1507823 [6] GAUDREAU LAMARRE, P. Y. (2021). Semigroups for one-dimensional Schrödinger operators with multiplicative Gaussian noise. Electron. J. Probab. 26 107. · Zbl 1494.47080 · doi:10.1214/21-EJP654 [7] MCKEAN, H. P. (1994). A limit law for the ground state of Hill’s equation. J. Stat. Phys. 74 1227-1232. · Zbl 0828.60048 · doi:10.1007/BF02188225 [8] NAKANO, F. and TRINH, K. D. (2018). Gaussian beta ensembles at high temperature: Eigenvalue fluctuations and bulk statistics. J. Stat. Phys. 173 295-321. · Zbl 1403.60013 · doi:10.1007/s10955-018-2131-9 [9] PAKZAD, C. (2019). Poisson statistics at the edge of Gaussian \(β\)-ensemble at high temperature. ALEA Lat. Am. J. Probab. Math. Stat. 16 871-897. · Zbl 1422.60018 · doi:10.30757/alea.v16-32 [10] Ramírez, J. A., Rider, B. and Virág, B. (2011). Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24 919-944. · Zbl 1239.60005 · doi:10.1090/S0894-0347-2011-00703-0 [11] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.