Scaling properties of a moving polymer. (English) Zbl 1504.60102

Summary: We set up an SPDE model for a moving, weakly self-avoiding polymer with intrinsic length \(J\) taking values in \((0,\infty)\). Our main result states that the effective radius of the polymer is approximately \({J^{5/3}}\); evidently for large \(J\) the polymer undergoes stretching. This contrasts with the equilibrium situation without the time variable, where many earlier results show that the effective radius is approximately \(J\).
For such a moving polymer taking values in \({\mathbb{R}^2}\), we offer a conjecture that the effective radius is approximately \({J^{5/4}}\).


60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82D60 Statistical mechanics of polymers
60H40 White noise theory
Full Text: DOI arXiv


[1] BAUERSCHMIDT, R., DUMINIL-COPIN, H., GOODMAN, J. and SLADE, G. (2012). Lectures on self-avoiding walks. In Probability and Statistical Physics in Two and More Dimensions. Clay Math. Proc. 15 395-467. Amer. Math. Soc., Providence, RI. · Zbl 1317.60125
[2] BAUERSCHMIDT, R., SLADE, G., TOMBERG, A. and WALLACE, B. C. (2017). Finite-order correlation length for four-dimensional weakly self-avoiding walk and \[|\varphi{|^4}\] spins. Ann. Henri Poincaré 18 375-402. · Zbl 1357.81136 · doi:10.1007/s00023-016-0499-0
[3] BERCU, B. and ROUAULT, A. (2001). Sharp large deviations for the Ornstein-Uhlenbeck process. Teor. Veroyatn. Primen. 46 74-93. · Zbl 1101.60320 · doi:10.1137/S0040585X97978737
[4] BOLTHAUSEN, E. (1990). On self-repellent one-dimensional random walks. Probab. Theory Related Fields 86 423-441. · doi:10.1007/BF01198167
[5] BRYC, W. and DEMBO, A. (1997). Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 307-332. · Zbl 0894.60026 · doi:10.1023/A:1022656331883
[6] Dawson, D. A. (1978). Geostochastic calculus. Canad. J. Statist. 6 143-168. · Zbl 0399.60047 · doi:10.2307/3315044
[7] DEN HOLLANDER, F. (2009). Random Polymers. Lecture Notes in Math. 1974. Springer, Berlin. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. · Zbl 1173.82002 · doi:10.1007/978-3-642-00333-2
[8] DOI, M. and EDWARDS, S. F. (1986). The Theory of Polymer Dynamics. Oxford Univ. Press, Oxford.
[9] FLORY, P. J. (1949). The configuration of real polymer chains. J. Chem. Phys. 17 303-310.
[10] FUNAKI, T. (1983). Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89 129-193. · Zbl 0531.60095 · doi:10.1017/S0027763000020298
[11] Giacomin, G. (2007). Random Polymer Models. Imperial College Press, London. · Zbl 1125.82001 · doi:10.1142/9781860948299
[12] GREVEN, A. and DEN HOLLANDER, F. (1993). A variational characterization of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Probab. 3 1067-1099. · Zbl 0784.60094
[13] HARA, T. and SLADE, G. (1992). Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147 101-136. · Zbl 0755.60053
[14] HARA, T. and SLADE, G. (1992). The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys. 4 235-327. · Zbl 0755.60054 · doi:10.1142/S0129055X9200008X
[15] MADRAS, N. and SLADE, G. (2013). The Self-Avoiding Walk. Modern Birkhäuser Classics. Birkhäuser/Springer, New York. Reprint of the 1993 original. · Zbl 1254.01051 · doi:10.1007/978-1-4614-6025-1
[16] MUELLER, C. and TRIBE, R. (2002). Hitting properties of a random string. Electron. J. Probab. 7 no. 10. · Zbl 1010.60059 · doi:10.1214/EJP.v7-109
[17] VAN DER HOFSTAD, R., DEN HOLLANDER, F. and KÖNIG, W. (1997). Central limit theorem for the Edwards model. Ann. Probab. 25 573-597. · doi:10.1214/aop/1024404412
[18] VAN DER HOFSTAD, R. and KÖNIG, W. (2001). A survey of one-dimensional random polymers. J. Stat. Phys. 103 915-944. · Zbl 1126.82313 · doi:10.1023/A:1010309005541
[19] VARADHAN, S. R. S. (1969). Appendix to “Euclidean Quantum Field Theory” by K. Symanzik. In Local Quantum Theory (R. Jost, ed.). Academic Press, New York.
[20] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin · Zbl 0608.60060 · doi:10.1007/BFb0074920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.