×

Multiple-term refinements of Alzer-Fonseca-Kovačec inequalities. (English) Zbl 1505.15016

Summary: By the weighted arithmetic-geometric mean inequality we present multiple-term refinements of one of the most important extensions to Young’s inequalities due to H. Alzer et al. [Linear Multilinear Algebra 63, No. 3, 622–635 (2015; Zbl 1316.15023)]. As applications, we give some related inequalities for operators and matrices.

MSC:

15A45 Miscellaneous inequalities involving matrices
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
26D07 Inequalities involving other types of functions
47A63 Linear operator inequalities

Citations:

Zbl 1316.15023

References:

[1] M. Akkouchi and M. A. Ighachane, “A new proof of a refined Young inequality”, Bull. Int. Math. Virtual Inst. 10:3 (2020), 425-428. · Zbl 1474.26059 · doi:10.7153/mia-2020-23-82
[2] Y. Al-Manasrah and F. Kittaneh, “A generalization of two refined Young inequalities”, Positivity 19:4 (2015), 757-768. · Zbl 1335.15029 · doi:10.1007/s11117-015-0326-8
[3] Y. Al-Manasrah and F. Kittaneh, “Further generalizations, refinements, and reverses of the Young and Heinz inequalities”, Results Math. 71:3 (2017), 1063-1072. · Zbl 1375.26041 · doi:10.1007/s00025-016-0611-2
[4] H. Alzer, C. M. da Fonseca, and A. Kovačec, “Young-type inequalities and their matrix analogues”, Linear Multilinear Algebra 63:3 (2015), 622-635. · Zbl 1316.15023 · doi:10.1080/03081087.2014.891588
[5] T. Ando, “Matrix Young inequalities”, pp. 33-38 in Operator theory in function spaces and Banach lattices, Oper. Theory Adv. Appl. 75, Birkhäuser, Basel, 1995. · Zbl 0830.47010
[6] D. Choi, “A generalization of Young-type inequalities”, Math. Inequal. Appl. 21:1 (2018), 99-106. · Zbl 1386.15041 · doi:10.7153/mia-2018-21-08
[7] S. Furuichi, “Alternative proofs of the generalized reverse Young inequalities”, Adv. Inequal. Appl. 12 (2017), art. id. 12.
[8] S. Furuichi, “Further improvements of Young inequality”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113:1 (2019), 255-266. · Zbl 1409.26010 · doi:10.1007/s13398-017-0469-5
[9] O. Hirzallah and F. Kittaneh, “Matrix Young inequalities for the Hilbert-Schmidt norm”, Linear Algebra Appl. 308:1-3 (2000), 77-84. · Zbl 0957.15018 · doi:10.1016/S0024-3795(99)00270-0
[10] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1985. · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[11] M. A. Ighachane and M. Akkouchi, “A new generalization of two refined Young inequalities and applications”, Moroccan J. Pure Appl. Anal. 6:2 (2020), 155-167. · Zbl 07836857 · doi:10.2478/mjpaa-2020-0012
[12] M. A. Ighachane and M. Akkouchi, “Further generalized refinement of Young’s inequalities for \[\tau \]-mesurable operators”, Moroccan J. Pure Appl. Anal. 7:2 (2021), 214-226. · Zbl 07836883 · doi:10.2478/mjpaa-2021-0015
[13] M. A. Ighachane and M. Akkouchi, “Further refinements of Young’s type inequality for positive linear maps”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115:2 (2021), art. id. 94. · Zbl 1481.47020 · doi:10.1007/s13398-021-01032-4
[14] M. A. Ighachane and M. Akkouchi, “A new generalization of refined young inequalities for \[\tau \]-measurable operators”, Filomat 35:4 (2021), 1253-1265. · doi:10.2298/fil2104253i
[15] M. A. Ighachane and M. Akkouchi, “A new generalized refinements of Young’s inequality and applications”, J. Math. Inequal. 15:3 (2021), 1019-1029. · Zbl 1478.26012 · doi:10.7153/jmi-2021-15-69
[16] M. A. Ighachane, M. Akkouchi, and E. H. Benabdi, “Further refinements of Alzer-Fonseca-Kovačec’s inequalities and applications”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115:3 (2021), art. id. 152. · Zbl 1494.47024 · doi:10.1007/s13398-021-01093-5
[17] F. Kittaneh, “Norm inequalities for fractional powers of positive operators”, Lett. Math. Phys. 27:4 (1993), 279-285. · Zbl 0895.47003 · doi:10.1007/BF00777375
[18] F. Kittaneh and Y. Manasrah, “Improved Young and Heinz inequalities for matrices”, J. Math. Anal. Appl. 361:1 (2010), 262-269. · Zbl 1180.15021 · doi:10.1016/j.jmaa.2009.08.059
[19] F. Kubo and T. Ando, “Means of positive linear operators”, Math. Ann. 246:3 (1979/80), 205-224. · Zbl 0412.47013 · doi:10.1007/BF01371042
[20] J. Pečarić, T. Furuta, J. Mićić Hot, and Y. Seo, Mond-Pečarić method in operator inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005. · Zbl 1135.47012
[21] Y. Ren, “Some results of Young-type inequalities”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114:3 (2020), art. id. 143. · Zbl 1447.15017 · doi:10.1007/s13398-020-00880-w
[22] Y. Ren and P. Li, “Further refinements of reversed AM-GM operator inequalities”, J. Inequal. Appl. (2020), art. id. 98. · Zbl 1487.47030 · doi:10.1186/s13660-020-02353-5
[23] Y. Ren, P. Li, and G. Hong, “Quadratic refinements of Young type inequalities”, Math. Slovaca 70:5 (2020), 1087-1096. · Zbl 1479.15020 · doi:10.1515/ms-2017-0416
[24] M. Sababheh, “Convexity and matrix means”, Linear Algebra Appl. 506 (2016), 588-602. · Zbl 1346.15019 · doi:10.1016/j.laa.2016.06.027
[25] C. Yang and Y. Li, “Refinements and reverses of Young type inequalities”, J. Math. Inequal. 14:2 (2020), 401-419. · Zbl 1447.15018 · doi:10.7153/jmi-2020-14-26
[26] C. Yang, Y. Gao, and F. Lu, “Some refinements of Young type inequality for positive linear map”, Math. Slovaca 69:4 (2019), 919-930. · Zbl 1486.47031 · doi:10.1515/ms-2017-0277
[27] J. Zhao and J. Wu, “Operator inequalities involving improved Young and its reverse inequalities”, J. Math. Anal. Appl. 421:2 (2015), 1779-1789 · Zbl 1298.15029 · doi:10.1016/j.jmaa.2014.08.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.