×

An optimal gradient estimate for asymptotically regular variational integrals with multi-phase. (English) Zbl 1505.35065

Summary: We devote this article to the Calderón-Zygmund estimate for the minimizers of asymptotically regular variational integrals with multi-phase integrands. A local gradient \(L^q\)-estimate for such problem under a sharp regular assumption is obtained by approximating the solutions of asymptotically regular problems to the solutions of regular problems based on a new perturbation method, while the gradients of solutions close to infinity.

MSC:

35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35J20 Variational methods for second-order elliptic equations

References:

[1] S. Baasandorj, S. S. Byun, and J. Oh, “Gradient estimates for multi-phase problems”, Calc. Var. Partial Differential Equations 60:3 (2021), art. id. 104. · Zbl 1511.35180 · doi:10.1007/s00526-021-01940-8
[2] P. Baroni, M. Colombo, and G. Mingione, “Regularity for general functionals with double phase”, Calc. Var. Partial Differential Equations 57:2 (2018), art. id. 62. · Zbl 1394.49034 · doi:10.1007/s00526-018-1332-z
[3] S. S. Byun and J. Oh, “Global gradient estimates for non-uniformly elliptic equations”, Calc. Var. Partial Differential Equations 56:2 (2017), art. id. 46. · Zbl 1378.35139 · doi:10.1007/s00526-017-1148-2
[4] S. S. Byun, J. Oh, and L. H. Wang, “Global Calderón-Zygmund theory for asymptotically regular nonlinear elliptic and parabolic equations”, Int. Math. Res. Not. 2015:17 (2015), 8289-8308. · Zbl 1329.35148 · doi:10.1093/imrn/rnu203
[5] M. Chipot and L. C. Evans, “Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations”, Proc. Roy. Soc. Edinburgh Sect. A 102:3-4 (1986), 291-303. · Zbl 0602.49029 · doi:10.1017/S0308210500026378
[6] M. Colombo and G. Mingione, “Bounded minimisers of double phase variational integrals”, Arch. Ration. Mech. Anal. 218:1 (2015), 219-273. · Zbl 1325.49042 · doi:10.1007/s00205-015-0859-9
[7] M. Colombo and G. Mingione, “Regularity for double phase variational problems”, Arch. Ration. Mech. Anal. 215:2 (2015), 443-496. · Zbl 1322.49065 · doi:10.1007/s00205-014-0785-2
[8] M. Colombo and G. Mingione, “Calderón-Zygmund estimates and non-uniformly elliptic operators”, J. Funct. Anal. 270:4 (2016), 1416-1478. · Zbl 1479.35158 · doi:10.1016/j.jfa.2015.06.022
[9] C. De Filippis, “Optimal gradient estimates for multi-phase integrals”, Math. Eng. 4:5 (2022), art. id. 043. · Zbl 1529.49004 · doi:10.3934/mine.2022043
[10] C. De Filippis and G. Mingione, “A borderline case of Calderón-Zygmund estimates for nonuniformly elliptic problems”, St. Petersburg Math J. 31 (2020), 455-477. · Zbl 1435.35127 · doi:10.1090/spmj/1608
[11] C. De Filippis and J. Oh, “Regularity for multi-phase variational problems”, J. Differential Equations 267:3 (2019), 1631-1670. · Zbl 1422.49037 · doi:10.1016/j.jde.2019.02.015
[12] L. Diening and F. Ettwein, “Fractional estimates for non-differentiable elliptic systems with general growth”, Forum Math. 20:3 (2008), 523-556. · Zbl 1188.35069 · doi:10.1515/FORUM.2008.027
[13] G. Dolzmann and J. Kristensen, “Higher integrability of minimizing Young measures”, Calc. Var. Partial Differential Equations 22:3 (2005), 283-301. · Zbl 1092.49016 · doi:10.1007/s00526-004-0273-x
[14] Y. Z. Fang, V. D. Rădulescu, C. Zhang, and X. Zhang, “Gradient estimates for multi-phase problems in Campanato spaces”, Indiana Univ. Math. J. 71:3 (2022), 1079-1099. · Zbl 1500.35172 · doi:10.1512/iumj.2022.71.8947
[15] M. Foss, “Global regularity for almost minimizers of nonconvex variational problems”, Ann. Mat. Pura Appl. (4) 187:2 (2008), 263-321. · Zbl 1223.49041 · doi:10.1007/s10231-007-0045-2
[16] M. Foss, A. Passarelli di Napoli, and A. Verde, “Global Lipschitz regularity for almost minimizers of asymptotically convex variational problems”, Ann. Mat. Pura Appl. (4) 189:1 (2010), 127-162. · Zbl 1180.49039 · doi:10.1007/s10231-009-0103-z
[17] M. Fuchs, “Regularity for a class of variational integrals motivated by non-linear elasticity”, Asymptotic Anal. 9:1 (1994), 23-38. · Zbl 0809.49010 · doi:10.3233/ASY-1994-9102
[18] M. Giaquinta and G. Modica, “Remarks on the regularity of the minimizers of certain degenerate functionals”, Manuscripta Math. 57:1 (1986), 55-99. · Zbl 0607.49003 · doi:10.1007/BF01172492
[19] S. Liang and S. Zheng, “Calderón-Zygmund estimate for asymptotically regular non-uniformly elliptic equations”, J. Math. Anal. Appl. 484:2 (2020), art. id. 123749. · Zbl 1433.35097 · doi:10.1016/j.jmaa.2019.123749
[20] B. Muckenhoupt, “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc. 165 (1972), 207-226. · Zbl 0236.26016 · doi:10.2307/1995882
[21] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991. · Zbl 0724.46032
[22] J.-P. Raymond, “Lipschitz regularity of solutions of some asymptotically convex problems”, Proc. Roy. Soc. Edinburgh Sect. A 117:1-2 (1991), 59-73. · Zbl 0725.49012 · doi:10.1017/S0308210500027608
[23] C. Scheven and T. Schmidt, “Asymptotically regular problems, II: Partial Lipschitz continuity and a singular set of positive measure”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8:3 (2009), 469-507. · Zbl 1197.49043
[24] C. Scheven and T. Schmidt, “Asymptotically regular problems, I: Higher integrability”, J. Differential Equations 248:4 (2010), 745-791. · Zbl 1190.49044 · doi:10.1016/j.jde.2009.11.021
[25] J. Zhang, M. Cai, and S. Zheng, “Weighted Lorentz estimate for asymptotically regular parabolic equations of \[p(x,t)\]-Laplacian type”, Nonlinear Anal. 180 (2019), 225-235 · Zbl 1411.35155 · doi:10.1016/j.na.2018.10.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.