×

Averaging with the divisor function: \(\ell^p\)-improving and sparse bounds. (English) Zbl 1505.42021

Summary: We study averages along the integers using the divisor function \(d(n)\), defined as
\[K_N f(x)=\frac{1}{D(N)} \sum_{n\leq N} d(n)\;f(x+n),\] where \(D(N)=\sum_{n=1}^N d(n)\). We shall show that these averages satisfy a uniform, scale free \(\ell^p\)-improving estimate for \(p\in(1, 2)\), that is
\[ \bigg(\frac{1}{N}\sum |K_N f|^{p^\prime} \bigg)^{1/p^\prime} \lesssim \bigg(\frac{1}{N}\sum |f|^p\bigg)^{1/p}\] as long as \(f\) is supported on \([0, N]\).
We will also show that the associated maximal function \(K^\ast f=\sup_N | K_N f |\) satisfies \((p, p)\) sparse bounds for \(p\in(1, 2)\), which implies that \(K^\ast\) is bounded on \(\ell^p(w)\) for \(p\in(1, \infty)\), for all weights \(w\) in the Muckenhoupt \(A_p\) class.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] T. C. Anderson, “Quantitative \[l^p\]-improving for discrete spherical averages along the primes”, J. Fourier Anal. Appl. 26:2 (2020), art. id. 32. · Zbl 1436.42026 · doi:10.1007/s00041-020-09733-x
[2] J. Bourgain, “Pointwise ergodic theorems for arithmetic sets”, Publications Mathématiques de l’IHÉS 69 (1989), 5-41. · Zbl 0705.28008 · doi:10.1007/BF02698838
[3] J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations”, Geom. Funct. Anal. 3:2 (1993), 107-156. · Zbl 0787.35097 · doi:10.1007/BF01896020
[4] J. Bourgain, Global solutions of nonlinear Schrödinger equations, Amer. Math. Soc. Coll. Publ. 46, Amer. Math. Soc., Providence, RI, 1999. · Zbl 0933.35178 · doi:10.1090/coll/046
[5] A. Culiuc, R. Kesler, and M. T. Lacey, “Sparse bounds for the discrete cubic Hilbert transform”, Anal. PDE 12:5 (2019), 1259-1272. · Zbl 1446.42001 · doi:10.2140/apde.2019.12.1259
[6] C. Cuny and M. Weber, “Ergodic theorems with arithmetical weights”, Israel J. Math. 217:1 (2017), 139-180. · Zbl 1364.37014 · doi:10.1007/s11856-017-1441-y
[7] S. Dasu, C. Demeter, and B. Langowski, “Sharp \[\ell^p\]-improving estimates for the discrete paraboloid”, J. Fourier Anal. Appl. 27:1 (2021), art. id. 3. · Zbl 1457.42013 · doi:10.1007/s00041-020-09801-2
[8] S. Dendrinos, K. Hughes, and M. Vitturi, “Some subcritical estimates for the \[\ell^p\]-improving problem for discrete curves”, J. Fourier Anal. Appl. 28:4 (2022), art. id. 69. · Zbl 1512.42020 · doi:10.1007/s00041-022-09958-y
[9] R. Han, V. Kovač, M. T. Lacey, J. Madrid, and F. Yang, “Improving estimates for discrete polynomial averages”, J. Fourier Anal. Appl. 26:3 (2020), art. id. 42. · Zbl 1442.42024 · doi:10.1007/s00041-020-09748-4
[10] R. Han, B. Krause, M. T. Lacey, and F. Yang, “Averages along the primes: improving and sparse bounds”, Concr. Oper. 7:1 (2020), 45-54. · Zbl 1436.42013 · doi:10.1515/conop-2020-0003
[11] R. Han, M. T. Lacey, and F. Yang, “Averages along the square integers: \[ \ell^p\]-improving and sparse inequalities”, Tunis. J. Math. 3:3 (2021), 517-550. · Zbl 1469.11265 · doi:10.2140/tunis.2021.3.517
[12] K. Hughes, “Restricted weak-type endpoint estimates for k-spherical maximal functions”, Math. Z. 286:3-4 (2017), 1303-1321. · Zbl 1375.42032 · doi:10.1007/s00209-016-1802-y
[13] K. Hughes, “\[ \ell^p\]-improving for discrete spherical averages”, Ann. H. Lebesgue 3 (2020), 959-980. · Zbl 1459.42026 · doi:10.5802/ahl.50
[14] A. D. Ionescu, “An endpoint estimate for the discrete spherical maximal function”, Proc. Amer. Math. Soc. 132:5 (2004), 1411-1417. · Zbl 1076.42014 · doi:10.1090/S0002-9939-03-07207-1
[15] M. Jutila, “On exponential sums involving the divisor function”, J. Reine Angew. Math. 355 (1985), 173-190. · Zbl 0542.10032 · doi:10.1515/crll.1985.355.173
[16] R. Kesler, “\[ \ell^p(\mathbb{Z}^d)\]-improving properties and sparse bounds for discrete spherical maximal averages”, preprint, 2018.
[17] R. Kesler, “\[ \ell^p(\mathbb{Z}^d)\]-improving properties and sparse bounds for discrete spherical maximal means, revisited”, preprint, 2018.
[18] R. Kesler and M. T. Lacey, “\[ \ell^p\]-improving inequalities for discrete spherical averages”, Anal. Math. 46:1 (2020), 85-95. · Zbl 1449.42033 · doi:10.1007/s10476-020-0019-9
[19] R. Kesler, M. T. Lacey, and D. Mena Arias, “Lacunary discrete spherical maximal functions”, New York J. Math. 25 (2019), 541-557. · Zbl 1425.42022
[20] R. Kesler, M. T. Lacey, and D. Mena, “Sparse bounds for the discrete spherical maximal functions”, Pure Appl. Anal. 2:1 (2020), 75-92. · Zbl 1460.42027 · doi:10.2140/paa.2020.2.75
[21] B. Krause, “Discrete analogoues in harmonic analysis: maximally monomially modulated singular integrals related to Carleson’s theorem”, preprint, 2018.
[22] A. K. Lerner, “A simple proof of the \[A_2\] conjecture”, Int. Math. Res. Not. 2013:14 (2013), 3159-3170. · Zbl 1318.42018 · doi:10.1093/imrn/rns145
[23] W. Littman, “\[L^p-L^q\]-estimates for singular integral operators arising from hyperbolic equations”, pp. 479-481 in Partial differential equations (Berkeley, CA, 1971), Proc. Sympos. Pure Math. 23, Amer. Math. Soc., Providence, R.I., 1973. · Zbl 0263.44006
[24] R. S. Strichartz, “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc. 148 (1970), 461-471 · Zbl 0199.17502 · doi:10.2307/1995383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.