Zhang, Rong On the Wolff-type integral system with negative exponents. (English) Zbl 1505.45005 Rocky Mt. J. Math. 52, No. 6, 2211-2228 (2022). Summary: Here, we are concerned with the positive continuous entire solutions of the Wolff-type integral system \[ \begin{cases} u(x)=C_{1} (x) W_{\beta,\gamma} (v^{-q}) (x), & \qquad u, v>0 \text{ in }\mathbb{R}^n, \\ v(x)=C_{2} (x) W_{\beta,\gamma} (u^{-p}) (x), & \qquad p, q>0, \end{cases} \] where \(n\geq 1\), \(\gamma>1\), \(\beta>0\) and \(\beta\gamma\neq n\). In addition, \(C_i(x)\) \((i=1, 2)\) are some double bounded functions. When \(\beta\gamma\in (0, n)\), the Serrin-type condition is critical for existence of positive solutions for some double bounded functions \(C_i(x)\) (\(i=1, 2\)). Such an integral equation system is related to the study of the \(\gamma\)-Laplace system and \(k\)-Hessian system with negative exponents. Estimated by the integral of the Wolff type potential, we obtain the asymptotic rates and the integrability of positive solutions, and study whether the radial solutions exist. MSC: 45G15 Systems of nonlinear integral equations 45M05 Asymptotics of solutions to integral equations 45M20 Positive solutions of integral equations Keywords:Wolff-type potential; Serrin-type condition; \(\gamma\)-Laplace system; \(k\)-Hessian system; asymptotic limit × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] W. Chen and C. Li, “Radial symmetry of solutions for some integral systems of Wolff type”, Discrete Contin. Dyn. Syst. 30:4 (2011), 1083-1093. · Zbl 1221.45006 · doi:10.3934/dcds.2011.30.1083 [2] H. Chen and Z. Lü, “The properties of positive solutions to an integral system involving Wolff potential”, Discrete Contin. Dyn. Syst. 34:5 (2014), 1879-1904. · Zbl 1277.45003 · doi:10.3934/dcds.2014.34.1879 [3] W. Chen and Z. Lü, “Existence and nonexistence of positive solutions to an integral system involving Wolff potential”, Commun. Pure Appl. Anal. 15:2 (2016), 385-398. · Zbl 1329.45008 · doi:10.3934/cpaa.2016.15.385 [4] W. Chen, C. Li, and B. Ou, “Classification of solutions for a system of integral equations”, Comm. Partial Differential Equations 30:1-3 (2005), 59-65. · Zbl 1073.45005 · doi:10.1081/PDE-200044445 [5] W. Chen, C. Li, and B. Ou, “Classification of solutions for an integral equation”, Comm. Pure Appl. Math. 59:3 (2006), 330-343. · Zbl 1093.45001 · doi:10.1002/cpa.20116 [6] J. Dou and M. Zhu, “Reversed Hardy-Littewood-Sobolev inequality”, Int. Math. Res. Not. 2015:19 (2015), 9696-9726. · Zbl 1329.26033 · doi:10.1093/imrn/rnu241 [7] L. I. Hedberg and T. H. Wolff, “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble) 33:4 (1983), 161-187. · Zbl 0508.31008 · doi:10.5802/aif.944 [8] C. Jin and C. Li, “Quantitative analysis of some system of integral equations”, Calc. Var. Partial Differential Equations 26:4 (2006), 447-457. · Zbl 1113.45006 · doi:10.1007/s00526-006-0013-5 [9] T. Kilpeläinen and J. Malý, “The Wiener test and potential estimates for quasilinear elliptic equations”, Acta Math. 172:1 (1994), 137-161. · Zbl 0820.35063 · doi:10.1007/BF02392793 [10] D. A. Labutin, “Potential estimates for a class of fully nonlinear elliptic equations”, Duke Math. J. 111:1 (2002), 1-49. · Zbl 1100.35036 · doi:10.1215/S0012-7094-02-11111-9 [11] Y. Lei, “Decay rates for solutions of an integral system of Wolff type”, Potential Anal. 35:4 (2011), 387-402. · Zbl 1242.45007 · doi:10.1007/s11118-010-9218-5 [12] Y. Lei, “Critical conditions and finite energy solutions of several nonlinear elliptic PDEs in \[R^n\]”, J. Differential Equations 258:11 (2015), 4033-4061. · Zbl 1315.35096 · doi:10.1016/j.jde.2015.01.043 [13] Y. Lei, “On the integral systems with negative exponents”, Discrete Contin. Dyn. Syst. 35:3 (2015), 1039-1057. · Zbl 1304.45006 · doi:10.3934/dcds.2015.35.1039 [14] Y. Lei, “Wolff type potential estimates and application to nonlinear equations with negative exponents”, Discrete Contin. Dyn. Syst. 35:5 (2015), 2067-2078. · Zbl 1307.45005 · doi:10.3934/dcds.2015.35.2067 [15] Y. Lei, “Qualitative properties of positive solutions of quasilinear equations with Hardy terms”, Forum Math. 29:5 (2017), 1177-1198. · Zbl 1381.35052 · doi:10.1515/forum-2014-0173 [16] Y. Lei and C. Li, “Integrability and asymptotics of positive solutions of a \[\gamma \]-Laplace system”, J. Differential Equations 252:3 (2012), 2739-2758. · Zbl 1235.35106 · doi:10.1016/j.jde.2011.10.009 [17] Y. Lei and C. Li, “Sharp criteria of Liouville type for some nonlinear systems”, Discrete Contin. Dyn. Syst. 36:6 (2016), 3277-3315. · Zbl 1336.35092 · doi:10.3934/dcds.2016.36.3277 [18] Y. Lei, C. Li, and C. Ma, “Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations”, Calc. Var. Partial Differential Equations 45:1-2 (2012), 43-61. · Zbl 1257.45005 · doi:10.1007/s00526-011-0450-7 [19] Y. Y. Li, “Remark on some conformally invariant integral equations: the method of moving spheres”, J. Eur. Math. Soc. 6:2 (2004), 153-180. · Zbl 1075.45006 · doi:10.4171/jems/6 [20] X. Liu and Y. Lei, “On the existence for an integral system including \[m\] equations”, Taiwanese J. Math. 24:2 (2020), 421-437. · Zbl 1448.45006 · doi:10.11650/tjm/190406 [21] C. Ma, W. Chen, and C. Li, “Regularity of solutions for an integral system of Wolff type”, Adv. Math. 226:3 (2011), 2676-2699. · Zbl 1209.45006 · doi:10.1016/j.aim.2010.07.020 [22] Q. A. Ngô and V. H. Nguyen, “Sharp reversed Hardy-Littlewood-Sobolev inequality on \[{\bf R}^n\]”, Israel J. Math. 220:1 (2017), 189-223. · Zbl 1379.26027 · doi:10.1007/s11856-017-1515-x [23] N. C. Phuc and I. E. Verbitsky, “Quasilinear and Hessian equations of Lane-Emden type”, Ann. of Math. (2) 168:3 (2008), 859-914. · Zbl 1175.31010 · doi:10.4007/annals.2008.168.859 [24] S. Sun and Y. Lei, “Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials”, J. Funct. Anal. 263:12 (2012), 3857-3882. · Zbl 1260.45004 · doi:10.1016/j.jfa.2012.09.012 [25] J. Villavert, “A characterization of fast decaying solutions for quasilinear and Wolff type systems with singular coefficients”, J. Math. Anal. Appl. 424:2 (2015), 1348-1373. · Zbl 1306.45001 · doi:10.1016/j.jmaa.2014.11.062 [26] J. Villavert, “Asymptotic and optimal Liouville properties for Wolff type integral systems”, Nonlinear Anal. 130 (2016), 102-120. · Zbl 1329.45009 · doi:10.1016/j.na.2015.09.017 [27] Y. Wang and Y. Lei, “On critical exponents of a \[k\]-Hessian equation in the whole space”, Proc. Roy. Soc. Edinburgh Sect. A 149:6 (2019), 1555-1575. · Zbl 1437.35418 · doi:10.1017/prm.2018.58 [28] X. Xu, “Exact solutions of nonlinear conformally invariant integral equations in \[\mathbf R^3\]”, Adv. Math. 194:2 (2005), 485-503. · Zbl 1073.45003 · doi:10.1016/j.aim.2004.07.004 [29] X. Xu, “Uniqueness theorem for integral equations and its application”, J. Funct. Anal. 247:1 (2007), 95-109 · Zbl 1153.45005 · doi:10.1016/j.jfa.2007.03.005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.