Chern, Shane Linked partition ideals and Andrews-Gordon type series for Alladi and Gordon’s extension of Schur’s identity. (English) Zbl 1506.05019 Rocky Mt. J. Math. 52, No. 6, 2009-2026 (2022). Summary: Based on the framework of linked partition ideals, we derive some double and triple series of Andrews-Gordon type for partitions in Alladi and Gordon’s extension of Schur’s identity. We also display similar series for such partitions with additional restrictions on the smallest part. Also, an alternative proof of Alladi and Gordon’s extension of Schur’s identity is presented. Cited in 3 Documents MSC: 05A17 Combinatorial aspects of partitions of integers 05A15 Exact enumeration problems, generating functions 11P84 Partition identities; identities of Rogers-Ramanujan type Keywords:linked partition ideals; Andrews-Gordon-type series; Schur identity; generating function × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] K. Alladi and B. Gordon, “Schur’s partition theorem, companions, refinements and generalizations”, Trans. Amer. Math. Soc. 347:5 (1995), 1591-1608. · Zbl 0830.05004 · doi:10.2307/2154961 [2] G. E. Andrews, “Partition identities”, Advances in Math. 9 (1972), 10-51. · Zbl 0235.10007 · doi:10.1016/0001-8708(72)90028-X [3] G. E. Andrews, “An analytic generalization of the Rogers-Ramanujan identities for odd moduli”, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082-4085. · Zbl 0289.10010 · doi:10.1073/pnas.71.10.4082 [4] G. E. Andrews, “A general theory of identities of the Rogers-Ramanujan type”, Bull. Amer. Math. Soc. 80 (1974), 1033-1052. · Zbl 0301.10016 · doi:10.1090/S0002-9904-1974-13616-5 [5] G. E. Andrews, “Problems and prospects for basic hypergeometric functions”, pp. 191-224 in Theory and application of special functions (Madison, WI, 1975), Academic Press, New York, 1975. · Zbl 0342.33001 · doi:10.1016/B978-0-12-064850-4.50008-2 [6] G. E. Andrews, The theory of partitions, Cambridge University Press, 1998. · Zbl 0996.11002 [7] G. Andrews, K. Bringmann, and K. Mahlburg, “Double series representations for Schur’s partition function and related identities”, J. Combin. Theory Ser. A 132 (2015), 102-119. · Zbl 1307.05224 · doi:10.1016/j.jcta.2014.12.004 [8] S. Chern, “Linked partition ideals, directed graphs and \[q\]-multi-summations”, Electron. J. Combin. 27:3 (2020), art. id. 3.33. · Zbl 1452.11126 · doi:10.37236/9446 [9] S. Chern and Z. Li, “Linked partition ideals and Kanade-Russell conjectures”, Discrete Math. 343:7 (2020), art. id. 111876. · Zbl 1440.05021 · doi:10.1016/j.disc.2020.111876 [10] W. Gleißberg, “Über einen Satz von Herrn I. Schur”, Math. Z. 28:1 (1928), 372-382. · JFM 54.0179.04 · doi:10.1007/BF01181171 [11] B. Gordon, “A combinatorial generalization of the Rogers-Ramanujan identities”, Amer. J. Math. 83 (1961), 393-399. · Zbl 0100.27303 · doi:10.2307/2372962 [12] K. Kurşungöz, “Andrews-Gordon type series for Schur’s partition identity”, Discrete Math. 344:11 (2021), art. id. 112563. · Zbl 1475.11185 · doi:10.1016/j.disc.2021.112563 [13] S. Ramanujan, “Proof of certain identities in combinatory analysis”, Proc. Cambridge Philos. Soc. 19 (1919), 214-216. · JFM 47.0903.01 [14] L. J. Rogers, “Third memoir on the expansion of certain infinite products”, Proc. Lond. Math. Soc. 26 (1894), 15-32. · JFM 26.0289.01 · doi:10.1112/plms/s1-26.1.15 [15] I. Schur, “Zur additiven Zahlentheorie”, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1926), 488-495 · JFM 52.0166.03 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.