Alzer, Horst; Richards, Kendall C. Combinatorial identities and hypergeometric functions. (English) Zbl 1506.05026 Rocky Mt. J. Math. 52, No. 6, 1921-1928 (2022). Summary: We use properties of the Gaussian hypergeometric function to prove the following identities for combinatorial polynomials:\[\sum_{j = 0}^n \binom{n + \alpha}{j} \binom{n+\beta}{n-j} z^j=\binom{n+\alpha}{n} \sum^n_{j=0}\binom{n}{j}\frac{\binom{n+j+\alpha+\beta}{j}}{\binom{j+\alpha}{j}} (z-1)^{n-j}\] and \[m\binom{m+n}{m} (1-z)^n \sum^n_{k=0} \frac{\binom{n}{k}}{m+k}\bigg(\frac{z}{1-z}\bigg)^k-\sum^n_{k=0}\binom{m+n}{k}(-z)^k=\sum^n_{k=0}\binom{m+n}{k}(-z)^{n-k}-\sum^n_{k=0}\binom{m+n}{n-k}(-z)^{n-k}.\] These formulas extend two combinatorial identities published by J. Brereton et al. [Electron. J. Comb. 18, No. 2, Research Paper P14, 14 p. (2011; Zbl 1229.05036)]. Cited in 1 ReviewCited in 1 Document MSC: 05A19 Combinatorial identities, bijective combinatorics 33C05 Classical hypergeometric functions, \({}_2F_1\) 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) Keywords:combinatorial identity; hypergeometric function; Jacobi polynomial Citations:Zbl 1229.05036 × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] H. Alzer, M. K. Kwong, and H. Pan, “Combinatorial identities and trigonometric inequalities”, Colloq. Math. 145:2 (2016), 291-305. · Zbl 1350.05009 · doi:10.4064/cm6859-5-2016 [2] G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999. · Zbl 0920.33001 · doi:10.1017/CBO9781107325937 [3] R. Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975. · Zbl 0298.33008 [4] C. Banderier and S. Schwer, “Why Delannoy numbers?”, J. Statist. Plann. Inference 135:1 (2005), 40-54. · Zbl 1074.01012 · doi:10.1016/j.jspi.2005.02.004 [5] J. Brereton, A. Farid, M. Karnib, G. Marple, A. Quenon, and A. Tefera, “Combinatorial and automated proofs of certain identities”, Electron. J. Combin. 18:2 (2011), art. id. 14. · Zbl 1229.05036 · doi:10.37236/2010 [6] M. Petkovšek, H. S. Wilf, and D. Zeilberger, \[A=B\], A K Peters, Wellesley, MA, 1996. · Zbl 0848.05002 [7] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and series, vol. 3: More special functions, Gordon and Breach, New York, 1986 · Zbl 0733.00004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.