D’Almeida, Jean On a conjecture of Gruson-Lazarsfeld-Peskine. (Sur une conjecture de Gruson-Lazarsfeld-Peskine.) (French. English summary) Zbl 1506.14067 Kyoto J. Math. 63, No. 1, 67-70 (2023). Summary: We study the Gruson-Lazarsfeld-Peskine conjecture about equations defining space curves and multisecant lines. MSC: 14H50 Plane and space curves 14N05 Projective techniques in algebraic geometry Keywords:Castelnuovo-Mumford regularity; multisecant line; space curve; Castelnuovo-Mumford regularity × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] J. D’Almeida, Courbes de l’espace projectif: séries linéaires incomplètes et multisécantes, Jour. Reine Angew. Math. 370 (1986), 30-51. · Zbl 0585.14010 · doi:10.1515/crll.1986.370.30 [2] J. D’Almeida, Une propriété des courbes tracées sur une surface de degré inférieur ou égal à trois, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 3, 203-207. · Zbl 0612.14027 [3] L. Gruson, R. Lazarsfeld, et C. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491-506. · Zbl 0565.14014 · doi:10.1007/BF01398398 [4] W. Fulton, Intersection Theory, Springer, Berlin, 1984. · Zbl 0541.14005 · doi:10.1007/978-3-662-02421-8 [5] A. Hirschowitz, La méthode d’Horace pour l’interpolation à plusieurs variables, Manuscripta Math. 50 (1985), 337-388 · Zbl 0571.14002 · doi:10.1007/BF01168836 [6] H. Hopf, Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv. 13 (1941), 219-239. · JFM 67.0737.03 · doi:10.1007/BF01378062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.