Derbazi, Choukri; Baitiche, Zidane Uniqueness and Ulam-Hyers-Mittag-Leffler stability results for the delayed fractional multiterm differential equation involving the \(\Phi\)-Caputo fractional derivative. (English) Zbl 1507.34088 Rocky Mt. J. Math. 52, No. 3, 887-897 (2022). Summary: The principal aim of this paper is to establish the uniqueness and Ulam-Hyers-Mittag-Leffler (UHML) stability of solutions for a new class of multiterm fractional time-delay differential equations in the context of the \(\Phi\)-Caputo fractional derivative. To achieve this purpose, the generalized Laplace transform method alongside facet with properties of the Mittag-Leffler functions (M-LFs) are utilized to give a new representation formula of the solutions for the aforementioned problem. Besides that, the uniqueness of the solutions of the considered problem is also proved by applying the well-known Banach contraction principle coupled with the \(\Phi\)-fractional Bielecki-type norm, while the \(\Phi\)-fractional Gronwall type inequality and the Picard operator (PO) technique, combined with the abstract Gronwall lemma, are used to prove the UHML stability results for the proposed problem. Lastly, an example is offered to assure the validity of the obtained theoretical results. Cited in 1 Document MSC: 34K37 Functional-differential equations with fractional derivatives 34L05 General spectral theory of ordinary differential operators 34K27 Perturbations of functional-differential equations 47N20 Applications of operator theory to differential and integral equations 44A10 Laplace transform 33E12 Mittag-Leffler functions and generalizations Keywords:\(\Phi\)-Caputo fractional derivative; time-delay differential equations; generalized Laplace transform; uniqueness; Ulam-Hyers-Mittag-Leffler (UHML) stability; \(\Phi\)-fractional Bielecki-type norm; \(\Phi\)-fractional Gronwall-type inequality × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] T. Abdeljawad, “On conformable fractional calculus”, J. Comput. Appl. Math. 279 (2015), 57-66. · Zbl 1304.26004 · doi:10.1016/j.cam.2014.10.016 [2] R. Almeida, “A Caputo fractional derivative of a function with respect to another function”, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481. · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006 [3] R. Almeida, “Fractional differential equations with mixed boundary conditions”, Bull. Malays. Math. Sci. Soc. 42:4 (2019), 1687-1697. · Zbl 1423.34005 · doi:10.1007/s40840-017-0569-6 [4] R. Almeida, “Functional differential equations involving the \[\Psi \]-Caputo fractional derivative”, Fractal and Fract. 4:2 (2020), art. id. 29. · doi:10.3390/fractalfract4020029 [5] M. Bouaouid, M. Hannabou, and K. Hilal, “Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach spaces”, J. Math. 2020 (2020), art. id. 5615080. · Zbl 1453.34003 · doi:10.1155/2020/5615080 [6] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer, Heidelberg, 2014. · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2 [7] R. Hilfer, Applications of fractional calculus in physics, World Scientific, River Edge, NJ, 2000. · Zbl 0998.26002 · doi:10.1142/9789812817747 [8] F. Jarad and T. Abdeljawad, “Generalized fractional derivatives and Laplace transform”, Discrete Contin. Dyn. Syst. Ser. S 13:3 (2020), 709-722. · Zbl 1444.44002 · doi:10.3934/dcdss.2020039 [9] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative”, J. Comput. Appl. Math. 264 (2014), 65-70. · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002 [10] J. P. Kharade and K. D. Kucche, “On the impulsive implicit \[\Psi \]-Hilfer fractional differential equations with delay”, Math. Methods Appl. Sci. 43:4 (2020), 1938-1952. · Zbl 1450.34057 · doi:10.1002/mma.6017 [11] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006. · Zbl 1092.45003 [12] K. D. Kucche and J. P. Kharade, “Analysis of impulsive \[\varphi \]-Hilfer fractional differential equations”, Mediterr. J. Math. 17:5 (2020), art. id. 163. · Zbl 1453.34009 · doi:10.1007/s00009-020-01575-7 [13] K. D. Kucche and A. D. Mali, “Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative”, Comput. Appl. Math. 39:1 (2020), art. id. 31. · Zbl 1449.34022 · doi:10.1007/s40314-019-1004-4 [14] K. D. Kucche, A. D. Mali, and J. V. C. Sousa, “On the nonlinear \[\Psi \]-Hilfer fractional differential equations”, Comput. Appl. Math. 38:2 (2019), art. id. 73. · Zbl 1449.34023 · doi:10.1007/s40314-019-0833-5 [15] M. Li, J. Wang, and D. O’Regan, “Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients”, Bull. Malays. Math. Sci. Soc. 42:4 (2019), 1791-1812. · Zbl 1422.34047 · doi:10.1007/s40840-017-0576-7 [16] K. Liu, J. Wang, and D. O’Regan, “Ulam-Hyers-Mittag-Leffler stability for \[\uppsi \]-Hilfer fractional-order delay differential equations”, Adv. Difference Equ. 2019 (2019), art. id. 50. · Zbl 1458.34128 · doi:10.1186/s13662-019-1997-4 [17] K. Liu, M. Fečkan, and J. Wang, “Hyers-Ulam stability and existence of solutions to the generalized Liouville-Caputo fractional differential equations”, Symmetry 2:6 (2020), art. id. 955. · doi:10.3390/sym12060955 [18] A. D. Mali and K. D. Kucche, “Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations”, Math. Methods Appl. Sci. 43:15 (2020), 8608-8631. · Zbl 1457.34013 · doi:10.1002/mma.6521 [19] D. Otrocol and V. Ilea, “Ulam stability for a delay differential equation”, Cent. Eur. J. Math. 11:7 (2013), 1296-1303. · Zbl 1275.34098 · doi:10.2478/s11533-013-0233-9 [20] S. Peng and J. Wang, “Existence and Ulam-Hyers stability of ODEs involving two Caputo fractional derivatives”, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), art. id. 52. · Zbl 1349.34036 · doi:10.14232/ejqtde.2015.1.52 [21] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198, Academic, San Diego, CA, 1999. · Zbl 0924.34008 [22] I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, Cluj, 2001. · Zbl 0968.54029 [23] I. A. Rus, “Gronwall lemmas: ten open problems”, Sci. Math. Jpn. 70:2 (2009), 221-228. · Zbl 1223.47064 [24] I. A. Rus, “Ulam stability of ordinary differential equations”, Stud. Univ. Babeş-Bolyai Math. 54:4 (2009), 125-133. · Zbl 1224.34165 [25] J. V. C. Sousa, “Existence results and continuity dependence of solutions for fractional equations”, Differ. Equ. Appl. 12:4 (2020), 377-396. · Zbl 1488.34409 · doi:10.7153/dea-2020-12-24 [26] J. V. C. Sousa and E. Capelas de Oliveira, “On the \[\uppsi \]-Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72-91. · Zbl 1470.26015 · doi:10.1016/j.cnsns.2018.01.005 [27] J. V. C. Sousa and E. Capelas de Oliveira, “A Gronwall inequality and the Cauchy-type problem by means of \[\uppsi \]-Hilfer operator”, Differ. Equ. Appl. 11:1 (2019), 87-106. · Zbl 1427.34017 · doi:10.7153/dea-2019-11-02 [28] J. V. C. Sousa and E. C. de Oliveira, “Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order”, preprint, 2018. [29] J. V. C. Sousa, K. D. Kucche, and E. C. de Oliveira, “Stability of \[\uppsi \]-Hilfer impulsive fractional differential equations”, Appl. Math. Lett. 88 (2019), 73-80. · Zbl 1408.34006 · doi:10.1016/j.aml.2018.08.013 [30] J. V. C. Sousa, K. D. Kucche, and E. Capelas de Oliveira, “On the Ulam-Hyers stabilities of the solutions of \[\Psi \]-Hilfer fractional differential equation with abstract Volterra operator”, Math. Methods Appl. Sci. 42:9 (2019), 3021-3032. · Zbl 1423.34089 · doi:10.1002/mma.5562 [31] V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer, Heidelberg, 2010. · Zbl 1214.81004 · doi:10.1007/978-3-642-14003-7 [32] C. Wang and T.-Z. Xu, “Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives”, Appl. Math. 60:4 (2015), 383-393. · Zbl 1363.34023 · doi:10.1007/s10492-015-0102-x [33] J. Wang and Y. Zhang, “Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations”, Optimization 63:8 (2014), 1181-1190. · Zbl 1296.34034 · doi:10.1080/02331934.2014.906597 [34] J. Wang, M. Fečkan, and Y. Zhou, “Presentation of solutions of impulsive fractional Langevin equations and existence results”, Eur. Phys. J. Special Topics 222 (2013), 1857-1874. · doi:10.1140/epjst/e2013-01969-9 [35] A. Zheng, Y. Feng, and W. Wang, “The Hyers-Ulam stability of the conformable fractional differential equation”, Math. Aeterna 5:3 (2015), 485-492. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.