×

On the fine spectrum of the operator \(Q (r, s, t, u)\) over \(\ell_p\) and \(bv_p\), \(1 < p < \infty\). (English) Zbl 1507.47077

Summary: We specify the fine spectrum of the quadruple band matrix operator \(Q (r, s, t, u)\) over the sequence spaces \(\ell_p\) and \(bv_p\), where \(1 < p < \infty\). The quadruple band matrix \(Q (r, s, t, u)\) is the general state of \(\Delta^3\), \(D (r, 0, 0, s)\), \(B (r, s, t)\), \(\Delta^2\), \(B (r, s)\), \(\Delta\), right shift and Zweier matrices, where \(\Delta^3\), \(B (r, s, t)\), \(\Delta^2\), \(B (r, s)\) and \(\Delta\) are called third-order difference, triple band, second-order difference, double band (generalized difference) and difference matrix, respectively.

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B39 Linear difference operators
47A10 Spectrum, resolvent

References:

[1] A. M. Akhmedov and F. Başar, “On the fine spectra of the difference operator \[{\rm{\Delta }}\] over the sequence space \[\ell_p(1\leq p < \infty)\]”, Demonstratio Math. 39:3 (2006), 585-595. · Zbl 1118.47303 · doi:10.1515/dema-2006-0313
[2] A. M. Akhmedov and F. Başar, “The fine spectra of the difference operator \[{\rm{\Delta }}\] over the sequence space \[bv_p,\ (1\leq p < \infty)\]”, Acta Math. Sin. (Engl. Ser.) 23:10 (2007), 1757-1768. · Zbl 1134.47025 · doi:10.1007/s10114-005-0777-0
[3] B. Altay and F. Başar, “On the fine spectrum of the difference operator \[{\rm{\Delta }}\] on \[{c_0\] and \[c\]”, Inform. Sci. 168:1-4 (2004), 217-224. · Zbl 1085.47041 · doi:10.1016/j.ins.2004.02.007
[4] B. Altay and F. Başar, “On the fine spectrum of the generalized difference operator \[B(r,s)\] over the sequence spaces \[{c_0\] and \[c\]”, Int. J. Math. Math. Sci. 2005:18 (2005), 3005-3013. · Zbl 1098.39013 · doi:10.1155/IJMMS.2005.3005
[5] B. Altay and F. Başar, “The fine spectrum and the matrix domain of the difference operator \[{\rm{\Delta }}\] on the sequence space \[l_p, (0 < p < 1)\]”, Commun. Math. Anal. 2:2 (2007), 1-11. · Zbl 1173.47021
[6] B. Altay and M. Karakuş, “On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces”, Thai J. Math. 3:2 (2005), 153-162. · Zbl 1085.62134 · doi:10.1080/1726037x.2005.10698496
[7] H. Bilgiç and H. Furkan, “On the fine spectrum of the operator \[B(r,s,t)\] over the sequence spaces \[l_1\] and \[bv\]”, Math. Comput. Modelling 45:7-8 (2007), 883-891. · Zbl 1152.47024 · doi:10.1016/j.mcm.2006.08.008
[8] H. Bilgiç and H. Furkan, “On the fine spectrum of the generalized difference operator \[B(r,s)\] over the sequence spaces \[l_p\] and \[bv_p\ (1 < p < \infty)\]”, Nonlinear Anal. 68:3 (2008), 499-506. · Zbl 1139.47005 · doi:10.1016/j.na.2006.11.015
[9] R. Das and B. C. Tripathy, “Spectrum and fine spectrum of the lower triangular matrix \[B(r,s,t)\] over the sequence space \[cs\]”, Songklanakarin J. Sci. and Technol. 38:3 (2016), 265-274. · doi:10.14456/sjst-psu.2016.36
[10] S. Dutta and P. Baliarsingh, “On the spectrum of 2-nd order generalized difference operator \[{\rm{\Delta }}^2\] over the sequence space \[c_0\]”, Bol. Soc. Parana. Mat. (3) 31:2 (2013), 235-244. · Zbl 1413.47013 · doi:10.5269/bspm.v31i2.17541
[11] H. Furkan, H. Bilgiç, and K. Kayaduman, “On the fine spectrum of the generalized difference operator \[B(r,s)\] over the sequence spaces \[l_1\] and \[bv\]”, Hokkaido Math. J. 35:4 (2006), 893-904. · Zbl 1119.47005 · doi:10.14492/hokmj/1285766434
[12] H. Furkan, H. Bilgiç, and B. Altay, “On the fine spectrum of the operator \[B(r,s,t)\] over \[c_0\] and \[c\]”, Comput. Math. Appl. 53:6 (2007), 989-998. · Zbl 1124.47024 · doi:10.1016/j.camwa.2006.07.006
[13] H. Furkan, H. Bilgiç, and F. Başar, “On the fine spectrum of the operator \[B(r,s,t)\] over the sequence spaces \[\ell_p\] and \[bv_p, (1 < p < \infty)\]”, Comput. Math. Appl. 60:7 (2010), 2141-2152. · Zbl 1222.47050 · doi:10.1016/j.camwa.2010.07.059
[14] S. Goldberg, Unbounded linear operators: Theory and applications, Dover, New York, 1985. · Zbl 0925.47001
[15] K. Kayaduman and H. Furkan, “The fine spectra of the difference operator \[{\rm{\Delta }}\] over the sequence spaces \[l_1\] and \[bv\]”, Int. Math. Forum 1:24 (2006), 1153-1160. · Zbl 1119.47306 · doi:10.12988/imf.2006.06093
[16] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978. · Zbl 0368.46014
[17] E. Malkowsky and V. Rakočević, “An introduction into the theory of sequence spaces and measures of noncompactness”, Zb. Rad. (Beogr.) 9:17 (2000), 143-234. · Zbl 0996.46006 · doi:10.1006/dspr.1999.0346
[18] A. Paul and B. C. Tripathy, “The spectrum of the operator \[D(r,0,0,s)\] over the sequence spaces \[\ell_p\] and \[bv_p\]”, Hacet. J. Math. Stat. 43:3 (2014), 425-434. · Zbl 1307.47028
[19] A. Paul and B. C. Tripathy, “The spectrum of the operator \[D(r,0,0,s)\] over the sequence space \[bv_p\]”, Georgian Math. J. 22:3 (2015), 421-426. · Zbl 1341.40001 · doi:10.1515/gmj-2015-0035
[20] A. Paul and B. C. Tripathy, “Subdivisions of the spectra for the operator \[D(r,0,0,s)\] over certain sequence spaces”, Bol. Soc. Parana. Mat. (3) 34:1 (2016), 75-84. · Zbl 1424.40049 · doi:10.5269/bspm.v34i1.22759
[21] M. Stieglitz and H. Tietz, “Matrixtransformationen von Folgenräumen Eine Ergebnisübersicht”, Math. Z. 154:1 (1977), 1-16. · Zbl 0331.40005 · doi:10.1007/BF01215107
[22] B. C. Tripathy and R. Das, “Spectra of the Rhaly operator on the sequence space \[\overline{bv_0}\cap\ell_\infty \]”, Bol. Soc. Parana. Mat. (3) 32:1 (2014), 265-277. · Zbl 1413.40014 · doi:10.5269/bspm.v32i1.19490
[23] B. C. Tripathy and R. Das, “Spectrum and fine spectrum of the upper triangular matrix \[U(r,s)\] over the sequence space”, Proyecciones 34:2 (2015), 107-125. · Zbl 1330.47008 · doi:10.4067/S0716-09172015000200001
[24] B. C. Tripathy and R. Das, “Fine spectrum of the upper triangular matrix \[U(r,0,0,s)\] over the sequence spaces \[c_0\] and \[c\]”, Proyecciones 37:1 (2018), 85-101. · Zbl 1508.47075 · doi:10.4067/s0716-09172018000100085
[25] B. C. Tripathy and A. Paul, “The spectrum of the operator \[D(r,0,0,s)\] over the sequence spaces \[c_0\] and \[c\]”, Kyungpook Math. J. 53:2 (2013), 247-256. · Zbl 1285.47036 · doi:10.5666/KMJ.2013.53.2.247
[26] B. C. Tripathy and A. Paul, “The spectrum of the operator \[D(r,0,s,0,t)\] over the sequence spaces \[c_0\] and \[c\]”, J. Math. 2013 (2013), art. id. 430965. · Zbl 1285.47035 · doi:10.1155/2013/430965
[27] B. C. Tripathy and P. Saikia, “On the spectrum of the Cesàro operator \[c_0\] on \[b\overline v_0\cap\ell_\infty \]”, Math. Slovaca 63:3 (2013), 563-572. · Zbl 1349.40024 · doi:10.2478/s12175-013-0118-1
[28] A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies 85, North-Holland, Amsterdam, 1984. · Zbl 0531.40008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.