Lin, Wenhui Nonlinear mappings preserving Jordan-type \(\eta\)-\(\ast\)-products. (English) Zbl 1507.47084 Rocky Mt. J. Math. 52, No. 3, 967-998 (2022). Summary: Let \(\eta\) be a nonzero complex number. Let \(\mathscr{A}\) and \(\mathscr{B}\) be two von Neumann algebras, one of which has no central abelian projections, and let \(\Phi: \mathscr{A} \to \mathscr{B}\) be a not necessarily linear bijection. For arbitrary elements \(A, B \in\mathscr{A}\), one can define their Jordan \(\eta\)-\(\ast\)-product in the sense of \(A\Diamond_\eta B = AB + \eta BA^\ast\). Let \(p_n (X_1, X_2, \dots, X_n)\) be the polynomial defined by \(n\) indeterminates \(X_1, \dots, X_n\) and their Jordan multiple \(\eta\)-\(\ast\)-product. In this article, it is shown that \(\Phi\) satisfies the condition \[\Phi (p_n (A_1, A_2, \dots, A_n)) = p_n (\Phi (A_1), \Phi (A_2), \dots, \Phi (A_n))\] for all \(A_1, A_2, \dots, A_n \in\mathscr{A}\) if and only if one of the following statements holds true: (1) \(\eta \in\mathbb{R}\) and there exists a central projection \(E \in\mathscr{A}\) such that \(\Phi (E)\) is a central projection in \(\mathscr{B}, \Phi |_{\mathscr{A}E} : \mathscr{A}E \to \mathscr{B} \Phi (E)\) is a linear \(\ast\)-isomorphism and \(\Phi|_{\mathscr{A}(I - E)} : \mathscr{A}(I - E) \to \mathscr{B}(I - \Phi (E))\) is a conjugate linear \(\ast\)-isomorphism, (2) \(\eta \notin \mathbb{R}\) and \(\Phi\) is a linear \(\ast\)-isomorphism. MSC: 47B49 Transformers, preservers (linear operators on spaces of linear operators) 46L10 General theory of von Neumann algebras Keywords:Jordan-type \(\eta\)-\(\ast\)-product; \(\ast\)-isomorphism; von Neumann algebra × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] R. L. An and J. C. Hou, “A characterization of \[\ast \]-automorphism on \[\mathcal{B}(H)\]”, Acta Math. Sin. (Engl. Ser.) 26:2 (2010), 287-294. · Zbl 1214.47035 · doi:10.1007/s10114-010-8634-1 [2] Z. Bai and S. Du, “Maps preserving products \[XY-YX^\ast\] on von Neumann algebras”, J. Math. Anal. Appl. 386:1 (2012), 103-109. · Zbl 1232.47032 · doi:10.1016/j.jmaa.2011.07.052 [3] M. Brešar and M. Fošner, “On rings with involution equipped with some new product”, Publ. Math. Debrecen 57:1-2 (2000), 121-134. · Zbl 0969.16013 [4] J. Cui and C.-K. Li, “Maps preserving product \[XY-YX^*\] on factor von Neumann algebras”, Linear Algebra Appl. 431:5-7 (2009), 833-842. · Zbl 1183.47031 · doi:10.1016/j.laa.2009.03.036 [5] L. Dai and F. Lu, “Nonlinear maps preserving Jordan *-products”, J. Math. Anal. Appl. 409:1 (2014), 180-188. · Zbl 1339.47047 · doi:10.1016/j.jmaa.2013.07.019 [6] P. Emrl, “Quadratic and quasi-quadratic functionals”, Proc. Amer. Math. Soc. 119:4 (1993), 1105-1113. · Zbl 0803.15024 · doi:10.2307/2159972 [7] D. Huo, B. Zheng, and H. Liu, “Nonlinear maps preserving Jordan triple \[\eta-\ast \]-products”, J. Math. Anal. Appl. 430:2 (2015), 830-844. · Zbl 1331.47054 · doi:10.1016/j.jmaa.2015.05.021 [8] D. Huo, B. Zheng, J. Xu, and H. Liu, “Nonlinear mappings preserving Jordan multiple \[\ast \]-product on factor von Neumann algebras”, Linear Multilinear Algebra 63:5 (2015), 1026-1036. · Zbl 1372.47047 · doi:10.1080/03081087.2014.915321 [9] P. Ji and Z. Liu, “Additivity of Jordan maps on standard Jordan operator algebras”, Linear Algebra Appl. 430:1 (2009), 335-343. · Zbl 1149.47028 · doi:10.1016/j.laa.2008.07.023 [10] C. Li and F. Lu, “Nonlinear maps preserving the Jordan triple \[1-\ast \]-product on von Neumann algebras”, Complex Anal. Oper. Theory 11:1 (2017), 109-117. · Zbl 1454.47043 · doi:10.1007/s11785-016-0575-y [11] C. Li, F. Lu, and X. Fang, “Nonlinear mappings preserving product \[XY+YX^\ast\] on factor von Neumann algebras”, Linear Algebra Appl. 438:5 (2013), 2339-2345. · Zbl 1276.47047 · doi:10.1016/j.laa.2012.10.015 [12] C. Li, F. Lu, and T. Wang, “Nonlinear maps preserving the Jordan triple \[\ast \]-product on von Neumann algebras”, Ann. Funct. Anal. 7:3 (2016), 496-507. · Zbl 1351.47028 · doi:10.1215/20088752-3624940 [13] C. J. Li, F. F. Zhao, and Q. Y. Chen, “Nonlinear skew Lie triple derivations between factors”, Acta Math. Sin. (Engl. Ser.) 32:7 (2016), 821-830. · Zbl 1362.47025 · doi:10.1007/s10114-016-5690-1 [14] C. Li, Y. Zhao, and F. Zhao, “Nonlinear \[\ast \]-Jordan-type derivations on \[\ast \]-algebras”, Rocky Mountain J. Math. 51:2 (2021), 601-612. · Zbl 1523.47045 · doi:10.1216/rmj.2021.51.601 [15] W. S. Martindale, III, “When are multiplicative mappings additive?”, Proc. Amer. Math. Soc. 21 (1969), 695-698. · Zbl 0175.02902 · doi:10.2307/2036449 [16] C. R. Miers, “Lie homomorphisms of operator algebras”, Pacific J. Math. 38 (1971), 717-735. · Zbl 0204.14803 · doi:10.2140/pjm.1971.38.717 [17] L. Molnár, “A condition for a subspace of \[\mathcal{B}(H)\] to be an ideal”, Linear Algebra Appl. 235 (1996), 229-234. · Zbl 0852.46021 · doi:10.1016/0024-3795(94)00143-X [18] D. Yang, “Jordan \[\ast \]-derivation pairs on standard operator algebras and related results”, Colloq. Math. 102:1 (2005), 137-145. · Zbl 1087.47041 · doi:10.4064/cm102-1-12 [19] F. Zhao and C. Li, “Nonlinear \[\ast \]-Jordan triple derivations on von Neumann algebras”, Math. Slovaca 68:1 (2018), 163-170. · Zbl 1479.47029 · doi:10.1515/ms-2017-0089 [20] F. Zhao and C. Li, “Nonlinear maps preserving the Jordan triple \[\ast \]-product between factors”, Indag. Math. (N.S.) 29:2 (2018), 619-627. · Zbl 1425.46050 · doi:10.1016/j.indag.2017.10.010 [21] Y. Zhao, C. Li, and Q. Chen, “Nonlinear maps preserving mixed product on factors”, Bull. Iranian Math. Soc. 47:5 (2021), 1325-1335. · Zbl 07426832 · doi:10.1007/s41980-020-00444-z This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.