×

Finite permutation groups with few orbits under the action on the power set. (English) Zbl 1508.20003

Summary: We study the orbits under the natural action of a permutation group \(G \leq \mathsf{S}_n\) on the powerset \(\mathcal{P}(\{1, \ldots, n\})\). The permutation groups having exactly \(n+1\) orbits on the powerset can be characterized as set-transitive groups and were fully classified by R. A. Beaumont and R. P. Peterson [Can. J. Math. 7, 35–42 (1955; Zbl 0064.02504)]. In this paper, we establish a general method that allows one to classify the permutation groups with \(n+r\) set-orbits for a given \(r\), and apply it to integers \(2 \leq r \leq 15\) with the help of GAP.

MSC:

20B05 General theory for finite permutation groups

Citations:

Zbl 0064.02504

Software:

GAP
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] L. Babai and L. Pyber, “Permutation groups without exponentially many orbits on the power set”, J. Combin. Theory Ser. A 66:1 (1994), 160-168. · Zbl 0803.20001 · doi:10.1016/0097-3165(94)90056-6
[2] R. A. Beaumont and R. P. Peterson, “Set-transitive permutation groups”, Canadian J. Math. 7 (1955), 35-42. · Zbl 0064.02504 · doi:10.4153/CJM-1955-005-x
[3] R. Breusch, “Zur Verallgemeinerung des Bertrandschen Postulates, daß zwischen \[x\] und \[2x\] stets Primzahlen liegen”, Math. Z. 34:1 (1932), 505-526. · JFM 58.0194.02
[4] W. Burnside, Theory of groups of finite order, University Press, Cambridge, 1897. · JFM 01.0191.01
[5] P. J. Cameron, “Regular orbits of permutation groups on the power set”, Discrete Math. 62:3 (1986), 307-309. · Zbl 0603.20001 · doi:10.1016/0012-365X(86)90218-9
[6] W. M. Kantor, “\[k\]-homogeneous groups”, Math. Z. 124 (1972), 261-265. · Zbl 0232.20003
[7] D. Livingstone and A. Wagner, “Transitivity of finite permutation groups on unordered sets”, Math. Z. 90 (1965), 393-403. · Zbl 0136.28101
[8] G. A. Miller, “Limits of the degree of transitivity of substitution groups”, Bull. Amer. Math. Soc. 22:2 (1915), 68-71. Reprinted in The collected works of George Abram Miller, vol. 3, University of Illinois Press, 1946; the result appears on p. 439. · JFM 45.1237.04 · doi:10.1090/S0002-9904-1915-02720-5
[9] J. von Neumann and O. Morgenstern, Theory of games and economic behavior, 2nd ed., Princeton University Press, Princeton, NJ, 1947. · Zbl 1241.91002
[10] “Transitive groups of degree up to 31”, online resource, available at https://people.maths.bris.ac.uk/ matyd/GroupNames/T31.html.
[11] The GAP group, “GAP: groups, algorithms, programming — a system for computational discrete algebra”, version 4.11.0, 2020, available at https://www.gap-system.org/.
[12] Y. Yang, “Solvable permutation groups and orbits on power sets”, Comm. Algebra 42:7 (2014), 2813-2820 · Zbl 1297.20002 · doi:10.1080/00927872.2013.773005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.