×

Notes on the harmonic index of graphs. (English) Zbl 1509.05055

The harmonic index of a graph \(G\) is defined as \(H(G)=\sum_{un\in E(G)}\frac{2}{d(u)+d(v)}\), where \(E(G)\) is the set of edges of \(G\) and \(d(u)\) is the degree of the vertex \(u\). The authors of this paper give a lower bound for \(H(G)\) in terms of \(\chi_{\mathrm{DP}}(G)\), the DP-chromatic number of \(G\). More precisely, they show that \[ H(G)\geq \frac{\chi_{\mathrm{DP}}(G)-2}{2}+\frac{2(\chi_{\mathrm{DP}}(G) -1) }{n+\chi_{\mathrm{DP}}(G)-2} +\frac{2(n- \chi_{\mathrm{DP}}(G)) }{n}, \] and this bound is sharp for all \(n\) and \(2\leq \chi_{\mathrm{DP}}(G \leq n.\) This generalizes a result by J.-B. Lv and J. Li [Discrete Appl. Math. 284, 611–615 (2020; Zbl 1443.05072)] which states that \[ H(G)\geq \frac{\chi_{\mathrm{DP}}(G)}{2}, \] and equality occurs if and only if \(G\) is a complete graph possibly with some additional isolated vertices.
Finally, they determine the structure of trees with minimum harmonic index among all trees with order \(n\) and segment \(l=(l_{1}, \dots , l_{m}). \)

MSC:

05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)
05C15 Coloring of graphs and hypergraphs

Citations:

Zbl 1443.05072

Software:

GRAFFITI

References:

[1] A. Y. Bernshteyn, A. V. Kostochka, and S. P. Pron, “On DP-coloring of graphs and multigraphs”, Sib. Math. J. 58:1 (2017), 28-36. · Zbl 1366.05038 · doi:10.1134/s0037446617010049
[2] H. Deng, S. Balachandran, S. K. Ayyaswamy, and Y. B. Venkatakrishnan, “On the harmonic index and the chromatic number of a graph”, Discrete Appl. Math. 161:16-17 (2013), 2740-2744. · Zbl 1285.05055 · doi:10.1016/j.dam.2013.04.003
[3] Z. Dvořák and L. Postle, “Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8”, J. Combin. Theory Ser. B 129 (2018), 38-54. · Zbl 1379.05034 · doi:10.1016/j.jctb.2017.09.001
[4] S. Fajtlowicz, “On conjectures of Graffiti, II”, Congr. Numer. 60 (1987), 189-197. · Zbl 0713.05054
[5] O. Favaron, M. Mahéo, and J.-F. Saclé, “Some eigenvalue properties in graphs (conjectures of Graffiti, II)”, Discrete Math. 111:1-3 (1993), 197-220. · Zbl 0785.05065 · doi:10.1016/0012-365X(93)90156-N
[6] I. Gutman and B. Furtula, Recent results in the theory of Randić index, Mathematical Chemistry Monographs 6, University of Kragujevac, 2008. · Zbl 1294.05002
[7] X. Li and Y. Shi, “A survey on the Randić index”, Commun. Math. Comput. Chem. 59:1 (2008), 127-156. · Zbl 1249.05198
[8] J. Li and W. C. Shiu, “The harmonic index of a graph”, Rocky Mountain J. Math. 44:5 (2014), 1607-1620. · Zbl 1305.05095 · doi:10.1216/RMJ-2014-44-5-1607
[9] J. Liu, “Harmonic index of dense graphs”, Ars Combin. 120 (2015), 293-304. · Zbl 1349.05064
[10] J.-B. Lv and J. Li, “The harmonic index of a graph and its DP-chromatic number”, Discrete Appl. Math. 284 (2020), 611-615. · Zbl 1443.05072 · doi:10.1016/j.dam.2020.03.042
[11] M. Randic, “On characterization of molecular branching”, J. Am. Chem. Soc. 97:23 (1975), 6609-6615. · doi:10.1021/ja00856a001
[12] X. Sun, Y. Gao, J. Du, and L. Xu, “On a conjecture of the harmonic index and the minimum degree of graphs”, Filomat 32:10 (2018), 3435-3441. · Zbl 1499.05103 · doi:10.2298/fil1810435s
[13] B. Wu and C. Elphick, “Upper bounds for the achromatic and coloring numbers of a graph”, Discrete Appl. Math. 217:part 2 (2017), 375-380. · Zbl 1358.05120 · doi:10.1016/j.dam.2016.09.005
[14] L. Zhong, “The harmonic index for graphs”, Appl. Math. Lett. 25:3 (2012), 561-566 · Zbl 1243.05126 · doi:10.1016/j.aml.2011.09.059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.