×

A unified approach to various Gorenstein modules. (English) Zbl 1509.18011

Let \(R\) be a ring, and \(\mathcal{V}\), \(\mathcal{W}\), \(\mathcal{Y}\), and \(\mathcal{X}\) four classes of left \(R\)-modules. The authors introduce a notion of \((\mathcal{V},\mathcal{W},\mathcal{Y},\mathcal{X})\)-Gorenstein module which unifies a number of well-known Gorenstein modules such as Gorenstein projective (injective) modules, Ding projective (injective) modules, Gorenstein AC-projective (injective) modules, and Gorenstein C-projective (injective) modules. Under certain mild assumptions on the classes \(\mathcal{V}\), \(\mathcal{W}\), \(\mathcal{Y}\), and \(\mathcal{X}\), they first study the essential properties of \((\mathcal{V},\mathcal{W},\mathcal{Y},\mathcal{X})\)-Gorenstein modules, and then apply the obtained results to establish the Foxby equivalences associate to \((\mathcal{V},\mathcal{W},\mathcal{Y},\mathcal{X})\)-Gorenstein modules. Many results on Gorenstein modules scattered in the literature can then be obtained as corollaries of this general setting.

MSC:

18G25 Relative homological algebra, projective classes (category-theoretic aspects)
18B05 Categories of sets, characterizations
18G20 Homological dimension (category-theoretic aspects)

References:

[1] D. Bennis, E. Duarte, J. R. García Rozas, and L. Oyonarte, “The role of w-tilting modules in relative Gorenstein (co)homology”, Open Math. 19:1 (2021), 1251-1278. · Zbl 1489.16010 · doi:10.1515/math-2021-0101
[2] D. Bennis, J. R. García Rozas, and L. Oyonarte, “Relative Gorenstein dimensions”, Mediterr. J. Math. 13:1 (2016), 65-91. · Zbl 1352.16011 · doi:10.1007/s00009-014-0489-8
[3] D. Bennis, J. R. García Rozas, and L. Oyonarte, “Relative Gorenstein global dimension”, Internat. J. Algebra Comput. 26:8 (2016), 1597-1615. · Zbl 1359.16006 · doi:10.1142/S0218196716500703
[4] D. Bennis, J. R. García Rozas, and L. Oyonarte, “Relative projective and injective dimensions”, Comm. Algebra 44:8 (2016), 3383-3396. · Zbl 1345.16010 · doi:10.1080/00927872.2015.1065852
[5] D. Bennis, J. R. García Rozas, and L. Oyonarte, “When do Foxby classes coincide with the classes of modules of finite Gorenstein dimensions?”, Kyoto J. Math. 56:4 (2016), 785-802. · Zbl 1379.16004 · doi:10.1215/21562261-3664914
[6] D. Bennis and K. Ouarghi, “\[ \mathcal X\]-Gorenstein projective modules”, Int. Math. Forum 5:9-12 (2010), 487-491. · Zbl 1191.13014
[7] D. Bravo, J. Gillespie, and M. Hovey, “The stable module category of a general ring”, 2014.
[8] N. Ding, Y. Li, and L. Mao, “Strongly Gorenstein flat modules”, J. Aust. Math. Soc. 86:3 (2009), 323-338. · Zbl 1200.16010 · doi:10.1017/S1446788708000761
[9] E. E. Enochs and O. M. G. Jenda, “Gorenstein injective and projective modules”, Math. Z. 220:4 (1995), 611-633. · Zbl 0845.16005 · doi:10.1007/BF02572634
[10] Z. Gao, X. Ma, and T. Zhao, “Gorenstein weak injective modules with respect to a semidualizing bimodule”, J. Korean Math. Soc. 55:6 (2018), 1389-1421. · Zbl 1401.16006 · doi:10.4134/JKMS.j170718
[11] Z. Gao and F. Wang, “Weak injective and weak flat modules”, Comm. Algebra 43:9 (2015), 3857-3868. · Zbl 1334.16008 · doi:10.1080/00927872.2014.924128
[12] Y. Geng and N. Ding, “\[ \mathcal X\]-Gorenstein modules”, J. Algebra 325 (2011), 132-146. · Zbl 1216.18015 · doi:10.1016/j.jalgebra.2010.09.040
[13] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra 189:1-3 (2004), 167-193. · Zbl 1050.16003 · doi:10.1016/j.jpaa.2003.11.007
[14] H. Holm and P. Jørgensen, “Semi-dualizing modules and related Gorenstein homological dimensions”, J. Pure Appl. Algebra 205:2 (2006), 423-445. · Zbl 1094.13021 · doi:10.1016/j.jpaa.2005.07.010
[15] H. Holm and D. White, “Foxby equivalence over associative rings”, J. Math. Kyoto Univ. 47:4 (2007), 781-808. · Zbl 1154.16007 · doi:10.1215/kjm/1250692289
[16] J. Hu and Y. Geng, “Relative Tor functors for level modules with respect to a semidualizing bimodule”, Algebr. Represent. Theory 19:3 (2016), 579-597. · Zbl 1343.18016 · doi:10.1007/s10468-015-9589-9
[17] J. Hu and D. Zhang, “Weak AB-context for FP-injective modules with respect to semidualizing modules”, J. Algebra Appl. 12:7 (2013), 1350039, 17. · Zbl 1303.18020 · doi:10.1142/S0219498813500394
[18] Z. Huang, “Proper resolutions and Gorenstein categories”, J. Algebra 393 (2013), 142-169. · Zbl 1291.18022 · doi:10.1016/j.jalgebra.2013.07.008
[19] Z. Liu, Z. Huang, and A. Xu, “Gorenstein projective dimension relative to a semidualizing bimodule”, Comm. Algebra 41:1 (2013), 1-18. · Zbl 1287.16015 · doi:10.1080/00927872.2011.602782
[20] B. H. Maddox, “Absolutely pure modules”, Proc. Amer. Math. Soc. 18 (1967), 155-158. · Zbl 0145.04601 · doi:10.2307/2035245
[21] L. Mao and N. Ding, “Relative FP-projective modules”, Comm. Algebra 33:5 (2005), 1587-1602. · Zbl 1082.16012 · doi:10.1081/AGB-200061047
[22] L. Mao and N. Ding, “Gorenstein FP-injective and Gorenstein flat modules”, J. Algebra Appl. 7:4 (2008), 491-506. · Zbl 1165.16004 · doi:10.1142/S0219498808002953
[23] F. Meng and Q. Pan, “\[ \mathcal X\]-Gorenstein projective and \[\mathcal Y\]-Gorenstein injective modules”, Hacet. J. Math. Stat. 40:4 (2011), 537-554. · Zbl 1250.16011
[24] S. Sather-Wagstaff, T. Sharif, and D. White, “Stability of Gorenstein categories”, J. Lond. Math. Soc. (2) 77:2 (2008), 481-502. · Zbl 1140.18010 · doi:10.1112/jlms/jdm124
[25] S. Sather-Wagstaff, T. Sharif, and D. White, “AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules”, Algebr. Represent. Theory 14:3 (2011), 403-428. · Zbl 1317.13029 · doi:10.1007/s10468-009-9195-9
[26] W. Song, T. Zhao, and Z. Huang, “One-sided Gorenstein subcategories”, Czechoslovak Math. J. 70(145):2 (2020), 483-504. · Zbl 1524.18030 · doi:10.21136/CMJ.2019.0385-18
[27] B. Stenström, “Coherent rings and FP-injective modules”, J. London Math. Soc. (2) 2 (1970), 323-329. · Zbl 0194.06602 · doi:10.1112/jlms/s2-2.2.323
[28] D. White, “Gorenstein projective dimension with respect to a semidualizing module”, J. Commut. Algebra 2:1 (2010), 111-137. · Zbl 1237.13029 · doi:10.1216/JCA-2010-2-1-111
[29] X. Yang, “Gorenstein categories \[\mathcal G(\mathcal X,\mathcal Y,\mathcal Z)\] and dimensions”, Rocky Mountain J. Math. 45:6 (2015), 2043-2064. · Zbl 1336.18005 · doi:10.1216/RMJ-2015-45-6-2043
[30] X. Yang and W. Chen, “Relative homological dimensions and Tate cohomology of complexes with respect to cotorsion pairs”, Comm. Algebra 45:7 (2017), 2875-2888. · Zbl 1372.18015 · doi:10.1080/00927872.2016.1233226
[31] C. Zhang, L. Wang, and Z. Liu, “Ding projective modules with respect to a semidualizing module”, Bull. Korean Math. Soc. 51:2 (2014), 339-356. · Zbl 1333.16013 · doi:10.4134/BKMS.2014.51.2.339
[32] C. Zhang, L. Wang, and Z. Liu, “Ding projective modules with respect to a semidualizing bimodule”, Rocky Mountain J. Math. 45:4 (2015), 1389-1411. · Zbl 1343.16008 · doi:10.1216/RMJ-2015-45-4-1389
[33] W. Zhang, Z. Liu, and X. Yang, “Foxby equivalences associated to Gorenstein categories \[\mathcal G(\mathcal X,\mathcal Y,\mathcal Z)\]”, Comm. Algebra 46:9 (2018), 4042-4051. · Zbl 1404.18007 · doi:10.1080/00927872.2018.1435788
[34] G. Zhao and J. Sun, “\[ \mathcal{VW} \]-Gorenstein categories”, Turkish J. Math. 40:2 (2016), 365-375. · Zbl 1424.18022 · doi:10.3906/mat-1502-37
[35] L. Zhao and Y. Zhou, “\[q\]-projective dimensions, Foxby equivalence and \[\mathcal{SD}_C\]-projective modules”, J. Algebra Appl. 15:6 (2016), 1650111, 23 · Zbl 1337.13013 · doi:10.1142/S0219498816501115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.