×

Entire and meromorphic solutions for several Fermat type partial differential difference equations in \(\mathbb{C}^2\). (English) Zbl 1510.32091

Summary: We explore the existence and the forms of entire and meromorphic solutions for the partial differential-difference equations with more general forms of
\[ \bigg(\alpha\frac{\partial f(z_{1}, z_{2})}{\partial z_{1}}+\beta\frac{\partial f(z_{1}, z_{2})}{\partial z_{2}}\bigg)^2+f(z_1+c_1,z_2+c_2)^2=e^{g(z_{1}, z_{2})}\] and
\[ \bigg(\alpha\frac{\partial f(z_{1}, z_{2})}{\partial z_{1}}+\beta\frac{\partial f(z_{1}, z_{2})}{\partial z_{2}}\bigg)^2+[f(z_1+c_1, z_2+c_2)-f(z_1, z_2)]^2=e^{g(z_1,z_2)},\] where \(g(z_1, z_2)\) is a polynomial in \(\mathbb{C}^2\) and \(\alpha, \beta\) are constants in \(\mathbb{C}\). Some of the results about the forms of solutions for these equations that are obtained are great improvements over previous results. It is important that some of the examples show that there exist some significant differences in the forms of transcendental entire solutions of finite order of the equations between several complex variables and a single complex variable.

MSC:

32W50 Other partial differential equations of complex analysis in several variables
34M45 Ordinary differential equations on complex manifolds

References:

[1] T. Cao and R. Korhonen, “A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables”, J. Math. Anal. Appl. 444:2 (2016), 1114-1132. · Zbl 1345.32012 · doi:10.1016/j.jmaa.2016.06.050
[2] T. Cao and L. Xu, “Logarithmic difference lemma in several complex variables and partial difference equations”, Ann. Mat. Pura Appl. (4) 199:2 (2020), 767-794. · Zbl 1436.39009 · doi:10.1007/s10231-019-00899-w
[3] Y.-M. Chiang and S.-J. Feng, “On the Nevanlinna characteristic of \[f(z+\eta)\] and difference equations in the complex plane”, Ramanujan J. 16:1 (2008), 105-129. · Zbl 1152.30024 · doi:10.1007/s11139-007-9101-1
[4] R. Courant and D. Hilbert, Methods of mathematical physics, vol. II: Partial differential equations, Interscience, New York, 1962. · Zbl 0099.29504
[5] P. R. Garabedian, Partial differential equations, Wiley, New York, 1964. · Zbl 0124.30501
[6] F. Gross, “On the equation \[f^n+g^n=1\]”, Bull. Amer. Math. Soc. 72 (1966), 86-88. · Zbl 0131.13603 · doi:10.1090/S0002-9904-1966-11429-5
[7] R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic derivative with applications to difference equations”, J. Math. Anal. Appl. 314:2 (2006), 477-487. · Zbl 1085.30026 · doi:10.1016/j.jmaa.2005.04.010
[8] R. G. Halburd and R. J. Korhonen, “Nevanlinna theory for the difference operator”, Ann. Acad. Sci. Fenn. Math. 31:2 (2006), 463-478. · Zbl 1108.30022
[9] R. G. Halburd and R. J. Korhonen, “Finite-order meromorphic solutions and the discrete Painlevé equations”, Proc. Lond. Math. Soc. (3) 94:2 (2007), 443-474. · Zbl 1119.39014 · doi:10.1112/plms/pdl012
[10] Q. Han and F. Lü, “On the equation \[f^n(z)+g^n(z) = e^{\alpha z+\beta}\]”, J. Contemp. Math. Anal. 54:2 (2019), 98-102. · Zbl 1433.30085 · doi:10.3103/S1068362319020067
[11] P.-C. Hu, P. Li, and C.-C. Yang, Unicity of meromorphic mappings, Advances in Complex Analysis and its Applications 1, Kluwer, Dordrecht, 2003. · Zbl 1074.30002 · doi:10.1007/978-1-4757-3775-2
[12] D. Khavinson, “A note on entire solutions of the eiconal equation”, Amer. Math. Monthly 102:2 (1995), 159-161. · Zbl 0845.35017 · doi:10.2307/2975351
[13] R. Korhonen, “A difference Picard theorem for meromorphic functions of several variables”, Comput. Methods Funct. Theory 12:1 (2012), 343-361. · Zbl 1242.32008 · doi:10.1007/BF03321831
[14] B. Q. Li, “On entire solutions of Fermat type partial differential equations”, Internat. J. Math. 15:5 (2004), 473-485. · Zbl 1053.35042 · doi:10.1142/S0129167X04002399
[15] B. Q. Li, “Entire solutions of \[(u_{z_1})^m+(u_{z_2})^n=e^g\]”, Nagoya Math. J. 178 (2005), 151-162. · Zbl 1086.35021 · doi:10.1017/S0027763000009156
[16] K. Liu, “Meromorphic functions sharing a set with applications to difference equations”, J. Math. Anal. Appl. 359:1 (2009), 384-393. · Zbl 1177.30035 · doi:10.1016/j.jmaa.2009.05.061
[17] K. Liu and T.-B. Cao, “Entire solutions of Fermat type \[q\]-difference differential equations”, Electron. J. Differential Equations 2013 (2013), art. id. 59. · Zbl 1287.39006 · doi:10.1007/s00013-012-0408-9
[18] K. Liu, T. Cao, and H. Cao, “Entire solutions of Fermat type differential-difference equations”, Arch. Math. (Basel) 99:2 (2012), 147-155. · Zbl 1270.34170 · doi:10.1007/s00013-012-0408-9
[19] P. Montel, Leçons sur les récurrences et leurs applications, Gauthier-Villars, Paris, 1957. · Zbl 0077.06601
[20] A. Naftalevich, “On a differential-difference equation”, Michigan Math. J. 22:3 (1976), 205-223. · Zbl 0319.30008
[21] A. Naftalevich, “On meromorphic solutions of a linear differential-difference equation with constant coefficients”, Michigan Math. J. 27:2 (1980), 195-213. · Zbl 0471.34005 · doi:10.1307/mmj/1029002357
[22] G. Pólya, “On an integral function of an integral function”, J. London Math. Soc. 1:1 (1926), 12-15. · JFM 52.0317.06 · doi:10.1112/jlms/s1-1.1.12
[23] L. I. Ronkin, Введение в теорию целых функциĭ многих леременных, Nauka, Moscow, 1971. Translated in Bull. Am. Math 82:2 (1976), 214-218, MRCLASS = 32-02 (32A15).
[24] E. G. Saleeby, “Entire and meromorphic solutions of Fermat type partial differential equations”, Analysis (Munich) 19:4 (1999), 369-376. · Zbl 0945.35021 · doi:10.1524/anly.1999.19.4.369
[25] W. Stoll, Holomorphic functions of finite order in several complex variables, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 21, American Mathematical Society, Providence, RI, 1974. · Zbl 0292.32003
[26] L. Xu and T. Cao, “Solutions of complex Fermat-type partial difference and differential-difference equations”, Mediterr. J. Math. 15:6 (2018), art. id. 227. · Zbl 1403.39014 · doi:10.1007/s00009-018-1274-x
[27] L. Xu and T. Cao, “Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations”, Mediterr. J. Math. 17:1 (2020), art. id. 8. · Zbl 1431.39008 · doi:10.1007/s00009-019-1438-3
[28] H. Y. Xu and Y. Y. Jiang, “Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116:1 (2022), art. id. 8. · Zbl 1476.32001 · doi:10.1007/s13398-021-01154-9
[29] H. Y. Xu and H. Wang, “Notes on the existence of entire solutions for several partial differential-difference equations”, Bull. Iranian Math. Soc. 47:5 (2021), 1477-1489. · Zbl 1477.35013 · doi:10.1007/s41980-020-00453-y
[30] H. Y. Xu, S. Y. Liu, and Q. P. Li, “Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type”, J. Math. Anal. Appl. 483:2 (2020), art. id. 123641. · Zbl 1429.39012 · doi:10.1016/j.jmaa.2019.123641
[31] H. Y. Xu, D. W. Meng, S. Liu, and H. Wang, “Entire solutions for several second-order partial differential-difference equations of Fermat type with two complex variables”, Adv. Difference Equ. 2021 (2021), art. id. 52 · Zbl 1487.30031 · doi:10.1186/s13662-020-03201-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.