×

Volumes of line bundles as limits on generically nonreduced schemes. (English) Zbl 1511.14013

Summary: The volume of a line bundle is defined in terms of a limsup. It is a fundamental question whether this limsup is a limit. It has been shown that this is always the case on generically reduced schemes. We show that volumes are limits in two classes of schemes that are not necessarily generically reduced: codimension one subschemes of projective varieties such that their components of maximal dimension contain normal points and projective schemes whose nilradical squared equals zero.

MSC:

14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14C40 Riemann-Roch theorems

References:

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969. · Zbl 0175.03601
[2] S. D. Cutkosky, “Asymptotic multiplicities of graded families of ideals and linear series”, Adv. Math. 264 (2014), 55-113. · Zbl 1350.13032 · doi:10.1016/j.aim.2014.07.004
[3] S. D. Cutkosky, Introduction to algebraic geometry, Graduate Studies in Mathematics 188, American Mathematical Society, Providence, RI, 2018. · Zbl 1396.14001 · doi:10.1090/gsm/188
[4] S. D. Cutkosky and R. Núñez, “Volumes of line bundles on schemes”, Proc. Amer. Math. Soc. 149:10 (2021), 4099-4108. · Zbl 1469.14022 · doi:10.1090/proc/15526
[5] S. D. Cutkosky and V. Srinivas, “On a problem of Zariski on dimensions of linear systems”, Ann. of Math. (2) 137:3 (1993), 531-559. · Zbl 0822.14006 · doi:10.2307/2946531
[6] O. Debarre, Higher-dimensional algebraic geometry, Springer, New York, 2001. · Zbl 0978.14001 · doi:10.1007/978-1-4757-5406-3
[7] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977. · Zbl 0367.14001
[8] K. Kaveh and A. G. Khovanskii, “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. of Math. (2) 176:2 (2012), 925-978. · Zbl 1270.14022 · doi:10.4007/annals.2012.176.2.5
[9] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 2004. · Zbl 1093.14501 · doi:10.1007/978-3-642-18808-4
[10] R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series”, Ann. Sci. Éc. Norm. Supér. (4) 42:5 (2009), 783-835. · Zbl 1182.14004 · doi:10.24033/asens.2109
[11] H. Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1989. · Zbl 0666.13002
[12] D. Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies 59, Princeton University Press, Princeton, N.J., 1966. · Zbl 0187.42701
[13] Y. Nakai, “Some fundamental lemmas on projective schemes”, Trans. Amer. Math. Soc. 109 (1963), 296-302. · Zbl 0123.38202 · doi:10.2307/1993908
[14] A. Okounkov, “Why would multiplicities be log-concave?”, pp. 329-347 in The orbit method in geometry and physics (Marseille, 2000), edited by C. Duval et al., Progr. Math. 213, Birkhäuser, Boston, MA, 2003 · Zbl 1063.22024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.