Mehdipour, Mohammad Javad; Moghimi, Gholam Reza The existence of nonzero compact right multipliers and Arens regularity of weighted Banach algebras. (English) Zbl 1512.43002 Rocky Mt. J. Math. 52, No. 6, 2101-2112 (2022). Summary: Let \(\omega\) be a weight function on a locally compact group \(\mathcal{G}\) and let \(M(\mathcal{G},\omega)_0^\ast\) be the subspace of \(M(\mathcal{G},\omega)^\ast\) consisting of all functionals that vanish at infinity. We first introduce an Arens product on \((M(\mathcal{G}, \omega)_0^\ast)^\ast\) under which it is a Banach algebra. We then show that the existence of a nonzero compact right multiplier on \((M(\mathcal{G}, \omega)_0^\ast)^\ast\) is equivalent to compactness of \(\mathcal{G}\). We also prove that if \((M(\mathcal{G}, \omega)_0^\ast)^\ast\) is Arens regular, then \(\mathcal{G}\) is discrete. Cited in 1 Document MSC: 43A10 Measure algebras on groups, semigroups, etc. 47B07 Linear operators defined by compactness properties 47B48 Linear operators on Banach algebras Keywords:locally compact group; weight function; measure algebra; compact right multiplier; Arens regularity × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] M. H. Ahmadi Gandomani and M. J. Mehdipour, “Jordan, Jordan right and Jordan left derivations on convolution algebras”, Bull. Iranian Math. Soc. 45:1 (2019), 189-204. · Zbl 1414.43004 · doi:10.1007/s41980-018-0125-7 [2] P. Civin, “Ideals in the second conjugate algebra of a group algebra”, Math. Scand. 11 (1962), 161-174. · Zbl 0178.16603 · doi:10.7146/math.scand.a-10663 [3] P. Civin and B. Yood, “The second conjugate space of a Banach algebra as an algebra”, Pacific J. Math. 11 (1961), 847-870. · Zbl 0119.10903 · doi:10.2140/pjm.1961.11.847 [4] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24, Oxford Univ. Press, New York, 2000. · Zbl 0981.46043 [5] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 836, Amer. Math. Soc., 2005. · Zbl 1075.43003 · doi:10.1090/memo/0836 [6] S. Degenfeld-Schonburg and R. Lasser, “Multipliers on \[L^p\]-spaces for hypergroups”, Rocky Mountain J. Math. 43:4 (2013), 1115-1139. · Zbl 1279.43006 · doi:10.1216/RMJ-2013-43-4-1115 [7] A. Ghaffari and A. Medghalchi, “Characterization of operators on the dual of hypergroups which commute with translations and convolutions”, Acta Math. Sin. (Engl. Ser.) 20:2 (2004), 201-208. · Zbl 1054.43007 · doi:10.1007/s10114-004-0338-y [8] F. Ghahramani, “Weighted group algebra as an ideal in its second dual space”, Proc. Amer. Math. Soc. 90:1 (1984), 71-76. · Zbl 0537.43011 · doi:10.2307/2044670 [9] M. Grosser, “\[L^1(G)\] as an ideal in its second dual space”, Proc. Amer. Math. Soc. 73:3 (1979), 363-364. · Zbl 0415.43003 · doi:10.2307/2042364 [10] E. Hewitt and K. Stromberg, Real and abstract analysis, Graduate Texts in Mathematics 25, Springer, 1975. · Zbl 0307.28001 [11] N. Işık, J. Pym, and A. Ülger, “The second dual of the group algebra of a compact group”, J. London Math. Soc. (2) 35:1 (1987), 135-148. · Zbl 0585.43001 · doi:10.1112/jlms/s2-35.1.135 [12] A. T. M. Lau and J. Pym, “Concerning the second dual of the group algebra of a locally compact group”, J. London Math. Soc. (2) 41:3 (1990), 445-460. · Zbl 0667.43004 · doi:10.1112/jlms/s2-41.3.445 [13] S. Maghsoudi, R. Nasr-Isfahani, and A. Rejali, “Strong Arens irregularity of Beurling algebras with a locally convex topology”, Arch. Math. (Basel) 86:5 (2006), 437-448. · Zbl 1096.43003 · doi:10.1007/s00013-005-1496-6 [14] S. Maghsoudi, M. J. Mehdipour, and R. Nasr-Isfahani, “Compact right multipliers on a Banach algebra related to locally compact semigroups”, Semigroup Forum 83:2 (2011), 205-213. · Zbl 1246.47010 · doi:10.1007/s00233-011-9312-z [15] D. Malekzadeh Varnosfaderani, Derivations, multipliers and topological centers of certain Banach algebras related to locally compact groups, Ph.D. thesis, University of Manitoba, 2017, available at https://mspace.lib.umanitoba.ca/xmlui/handle/1993/32276. [16] M. J. Mehdipour and R. Nasr-Isfahani, “Weakly compact multipliers on Banach algebras related to a locally compact group”, Acta Math. Hungar. 127:3 (2010), 195-206. · Zbl 1224.43005 · doi:10.1007/s10474-010-9117-7 [17] M. J. Mehdipour and Z. Saeedi, “Derivations on group algebras of a locally compact abelian group”, Monatsh. Math. 180:3 (2016), 595-605. · Zbl 1355.43003 · doi:10.1007/s00605-015-0800-1 [18] H. Reiter and J. D. Stegeman, Classical harmonic analysis and locally compact groups, 2nd ed., London Math. Soc. Monographs 22, Clarendon Press, Oxford, 2000. · Zbl 0965.43001 [19] A. Rejali and H. R. E. Vishki, “Regularity and amenability of the second dual of weighted group algebras”, Proyecciones 26:3 (2007), 259-267. · Zbl 1182.46040 · doi:10.4067/S0716-09172007000300004 [20] A. I. Singh, “\[L^\infty_0(G)^*\] as the second dual of the group algebra \[L^1(G)\] with a locally convex topology”, Michigan Math. J. 46:1 (1999), 143-150. · Zbl 0962.22003 · doi:10.1307/mmj/1030132365 [21] A. Ülger, “Continuity of weakly almost periodic functionals on \[L^1(G)\]”, Q. J. Math. 37:4 (12 1986), 495-497 · Zbl 0609.43005 · doi:10.1093/qmath/37.4.495 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.