Frauenfelder, Urs Nullity bounds for certain Hamiltonian delay equations. (English) Zbl 1514.37085 Kyoto J. Math. 63, No. 1, 195-209 (2023). Author’s abstract: In this paper we introduce a class of Hamilton delay equations which arise as critical points of an action functional motivated by orbit interactions. We show that the kernel of the Hessian at each critical point of the action functional satisfies a uniform bound on its dimension. Reviewer: Abderrazek Benhassine (Monastir) MSC: 37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods 37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems 37J06 General theory of finite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, invariants 34K17 Transformation and reduction of functional-differential equations and systems, normal forms Keywords:nullity bounds; Hamiltonian; delay equations × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] P. Albers, U. Frauenfelder, and F. Schlenk, A compactness result for non-local unregularized gradient flow lines, J. Fixed Point Theory Appl. 21 (2019), no. 1, paper no. 34. · Zbl 1414.53077 · doi:10.1007/s11784-019-0671-5 [2] P. Albers, U. Frauenfelder, and F. Schlenk, An iterated graph construction and periodic orbits of Hamiltonian delay equations, J. Differential Equations 266 (2019), no. 5, 2466-2492. · Zbl 1491.37052 · doi:10.1016/j.jde.2018.08.036 [3] V. Barutello, R. Ortega, and G. Verzini, Regularized variational principles for the perturbed Kepler problem, Adv. Math. 383 (2021), paper no. 107694. · Zbl 1482.70016 · doi:10.1016/j.aim.2021.107694 [4] H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Dover, Mineola, 2008. [5] U. Frauenfelder, Helium and Hamiltonian delay equations, Israel J. Math. 246 (2021), no. 1, 239-260. · Zbl 1514.70011 · doi:10.1007/s11856-021-2242-x [6] U. Frauenfelder and J. Weber, The fine structure of Weber’s hydrogen atom: Bohr-Sommerfeld approach, Z. Angew. Math. Phys. 70 (2019), no. 4, paper no. 105. · Zbl 1418.81097 · doi:10.1007/s00033-019-1149-4 [7] V. Ginzburg, The Conley Conjecture, Ann. of Math. (2) 172 (2010), no. 2, 1127-1180. · Zbl 1228.53098 · doi:10.4007/annals.2010.172.1129 [8] M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics 1, Springer, New York, 1990. · Zbl 0727.70029 · doi:10.1007/978-1-4612-0983-6 [9] T. Levi-Civita, Sur la régularisation du probleme des trois corps, Acta Math. 42 (1920), no. 1, 99-144. · JFM 47.0837.01 · doi:10.1007/BF02404404 [10] T. Ligon and M. Schaaf, On the Global Symmetry of the Classical Kepler Problem, Rep. Mathematical Phys. 9 (1976), no. 3, 281-300. · Zbl 0347.58005 · doi:10.1016/0034-4877(76)90061-6 [11] J. Moser, Regularization of Kepler’s problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636. · Zbl 0193.53803 · doi:10.1002/cpa.3160230406 [12] D. Salamon and E. Zehnder, “Floer homology, the Maslov index, and periodic solutions of Hamiltonian equations” in Analysis et Cetera, Academic Press, Boston, 1990, 573-600. · Zbl 0753.58011 · doi:10.1017/s0022112089001631 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.