Dey, Partha S.; Terlov, Grigory Stein’s method for conditional central limit theorem. (English) Zbl 1514.60035 Ann. Probab. 51, No. 2, 723-773 (2023). The authors extend Stein’s method to give error bounds and rates of convergence in univariate and multivariate conditional central limit theorems. That is, they give explicit error bounds (measured in 1-Wasserstein distance) in Gaussian approximation for random variables of the form \((W|Y=k)\), and analogous multivariate results. Here \(Y\) is assumed to be a discrete random variable uncorrelated with \(W\). The approach the authors take is motivated by the well-known exchangeable pairs approach to the usual central limit theorem via Stein’s method, and uses linearity conditions of a type familiar from that approach. Applications given include the appearance of patterns in random binary sequences, and subgraph counts in an Erdos-Rényi random graph. The paper concludes with a discussion of open problems and potential future work. Reviewer: Fraser Daly (Edinburgh) MSC: 60F05 Central limit and other weak theorems 60G50 Sums of independent random variables; random walks 05C80 Random graphs (graph-theoretic aspects) 62E17 Approximations to statistical distributions (nonasymptotic) Keywords:central limit theorem; conditional law; multivariate normal approximation; rate of convergence; Stein’s method × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] ARRAS, B. and HOUDRÉ, C. (2019). On Stein’s method for multivariate self-decomposable laws. Electron. J. Probab. 24 Paper No. 128, 63. · Zbl 1435.60017 · doi:10.1214/19-ejp378 [2] Barbour, A. D. (1982). Poisson convergence and random graphs. Math. Proc. Cambridge Philos. Soc. 92 349-359. · Zbl 0498.60016 · doi:10.1017/S0305004100059995 [3] Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probab. Theory Related Fields 84 297-322. · Zbl 0665.60008 · doi:10.1007/BF01197887 [4] Barbour, A. D., Karoński, M. and Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 125-145. · Zbl 0689.05042 · doi:10.1016/0095-8956(89)90014-2 [5] BARBOUR, A. D., RÖLLIN, A. and ROSS, N. (2019). Error bounds in local limit theorems using Stein’s method. Bernoulli 25 1076-1104. · Zbl 1508.60030 · doi:10.3150/17-bej1013 [6] BOLTHAUSEN, E. (1980). The Berry-Esseen theorem for functionals of discrete Markov chains. Z. Wahrsch. Verw. Gebiete 54 59-73. · Zbl 0431.60019 · doi:10.1007/BF00535354 [7] BULINSKIĬ, A. V. (2016). A conditional central limit theorem. Teor. Veroyatn. Primen. 61 686-708. · Zbl 1377.60039 · doi:10.1137/S0040585X97T98837X [8] CHATTERJEE, S. (2007). Stein’s method for concentration inequalities. Probab. Theory Related Fields 138 305-321. · Zbl 1116.60056 · doi:10.1007/s00440-006-0029-y [9] CHATTERJEE, S. (2012). A new approach to strong embeddings. Probab. Theory Related Fields 152 231-264. · Zbl 1235.60044 · doi:10.1007/s00440-010-0321-8 [10] Chatterjee, S. and Dey, P. S. (2010). Applications of Stein’s method for concentration inequalities. Ann. Probab. 38 2443-2485. · Zbl 1203.60023 · doi:10.1214/10-AOP542 [11] Chatterjee, S., Fulman, J. and Röllin, A. (2011). Exponential approximation by Stein’s method and spectral graph theory. ALEA Lat. Am. J. Probab. Math. Stat. 8 197-223. · Zbl 1276.60010 [12] Chatterjee, S. and Meckes, E. (2008). Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 257-283. · Zbl 1162.60310 [13] Chatterjee, S. and Shao, Q.-M. (2011). Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab. 21 464-483. · Zbl 1216.60018 · doi:10.1214/10-AAP712 [14] Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534-545. · Zbl 0335.60016 · doi:10.1214/aop/1176996359 [15] Chen, L. H. Y., Fang, X. and Shao, Q.-M. (2013). From Stein identities to moderate deviations. Ann. Probab. 41 262-293. · Zbl 1275.60029 · doi:10.1214/12-AOP746 [16] Chen, L. H. Y., Goldstein, L. and Shao, Q.-M. (2011). Normal Approximation by Stein’s Method. Probability and Its Applications (New York). Springer, Heidelberg. · Zbl 1213.62027 · doi:10.1007/978-3-642-15007-4 [17] CHEN, L. H. Y. and RÖLLIN, A. (2010). Stein couplings for normal approximation. Preprint. Available at http://arxiv.org/abs/1003.6039v2. [18] Chen, L. H. Y. and Shao, Q.-M. (2004). Normal approximation under local dependence. Ann. Probab. 32 1985-2028. · Zbl 1048.60020 · doi:10.1214/009117904000000450 [19] DEDECKER, J. and MERLEVÈDE, F. (2002). Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 1044-1081. · Zbl 1015.60016 · doi:10.1214/aop/1029867121 [20] DIACONIS, P. and HOLMES, S., eds. (2004) Stein’s Method: Expository Lectures and Applications. Institute of Mathematical Statistics Lecture Notes—Monograph Series 46. IMS, Beachwood, OH. · Zbl 1079.62024 [21] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge. · Zbl 1202.60001 · doi:10.1017/CBO9780511779398 [22] FANG, X. (2016). A multivariate CLT for bounded decomposable random vectors with the best known rate. J. Theoret. Probab. 29 1510-1523. · Zbl 1367.60017 · doi:10.1007/s10959-015-0619-7 [23] FANG, X. and KOIKE, Y. (2022). New error bounds in multivariate normal approximations via exchangeable pairs with applications to Wishart matrices and fourth moment theorems. Ann. Appl. Probab. 32 602-631. · Zbl 1485.60023 · doi:10.1214/21-aap1690 [24] GHOSH, S. and GOLDSTEIN, L. (2011). Concentration of measures via size-biased couplings. Probab. Theory Related Fields 149 271-278. · Zbl 1239.60011 · doi:10.1007/s00440-009-0253-3 [25] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA. · Zbl 0056.36001 [26] GOLDSTEIN, L. and IŞLAK, Ü. (2014). Concentration inequalities via zero bias couplings. Statist. Probab. Lett. 86 17-23. · Zbl 1292.60030 · doi:10.1016/j.spl.2013.12.001 [27] Goldstein, L. and Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7 935-952. · Zbl 0903.60019 · doi:10.1214/aoap/1043862419 [28] GOLDSTEIN, L. and REINERT, G. (2005). Zero biasing in one and higher dimensions, and applications. In Stein’s Method and Applications. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 5 1-18. Singapore Univ. Press, Singapore. · doi:10.1142/9789812567673_0001 [29] Goldstein, L. and Rinott, Y. (1996). Multivariate normal approximations by Stein’s method and size bias couplings. J. Appl. Probab. 33 1-17. · Zbl 0845.60023 · doi:10.1017/s0021900200103675 [30] Götze, F. (1991). On the rate of convergence in the multivariate CLT. Ann. Probab. 19 724-739. · Zbl 0729.62051 [31] GUO, X. and PETERSON, J. (2019). Berry-Esseen estimates for regenerative processes under weak moment assumptions. Stochastic Process. Appl. 129 1379-1412. · Zbl 1481.60048 · doi:10.1016/j.spa.2018.05.001 [32] HOLST, L. (1979). Two conditional limit theorems with applications. Ann. Statist. 7 551-557. · Zbl 0406.62008 [33] KAROŃSKI, M. and RUCIŃSKI, A. (1987). Poisson convergence and semi-induced properties of random graphs. Math. Proc. Cambridge Philos. Soc. 101 291-300. · Zbl 0627.60016 · doi:10.1017/S0305004100066664 [34] MCDONALD, D. R. (1979). On local limit theorem for integer valued random variables. Teor. Veroyatn. Primen. 24 607-614. · Zbl 0411.60027 [35] MECKES, E. (2006). An Infinitesimal Version of Stein’s Method of Exchangeable Pairs. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—Stanford University. [36] MECKES, E. (2009). On Stein’s method for multivariate normal approximation. In High Dimensional Probability V: The Luminy Volume. Inst. Math. Stat. (IMS) Collect. 5 153-178. IMS, Beachwood, OH. · Zbl 1243.60025 · doi:10.1214/09-IMSCOLL511 [37] NOURDIN, I., PECCATI, G. and RÉVEILLAC, A. (2010). Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46 45-58. · Zbl 1196.60035 · doi:10.1214/08-AIHP308 [38] RAIČ, M. (2018). A multivariate central limit theorem for Lipschitz and smooth test functions. https://arxiv.org/abs/1812.08268. · doi:10.48550/ARXIV.1812.08268 [39] Reinert, G. and Röllin, A. (2009). Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 2150-2173. · Zbl 1200.62010 · doi:10.1214/09-AOP467 [40] RINOTT, Y. (1994). On normal approximation rates for certain sums of dependent random variables. J. Comput. Appl. Math. 55 135-143. · Zbl 0821.60037 · doi:10.1016/0377-0427(94)90016-7 [41] RINOTT, Y. and ROTAR, V. (1996). A multivariate CLT for local dependence with \[{n^{-1/2}}\log n\] rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56 333-350. · Zbl 0859.60019 · doi:10.1006/jmva.1996.0017 [42] RÖLLIN, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11 1115-1128. · Zbl 1102.60022 · doi:10.3150/bj/1137421642 [43] Röllin, A. (2008). A note on the exchangeability condition in Stein’s method. Statist. Probab. Lett. 78 1800-1806. · Zbl 1147.62017 · doi:10.1016/j.spl.2008.01.043 [44] RÖLLIN, A. (2013). Stein’s method in high dimensions with applications. Ann. Inst. Henri Poincaré Probab. Stat. 49 529-549. · Zbl 1287.60043 · doi:10.1214/11-aihp473 [45] RÖLLIN, A. (2018). On quantitative bounds in the mean martingale central limit theorem. Statist. Probab. Lett. 138 171-176. · Zbl 1391.60092 · doi:10.1016/j.spl.2018.03.004 [46] RÖLLIN, A. and ROSS, N. (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21 851-880. · Zbl 1320.60065 · doi:10.3150/13-BEJ590 [47] Ross, N. (2011). Fundamentals of Stein’s method. Probab. Surv. 8 210-293. · Zbl 1245.60033 · doi:10.1214/11-PS182 [48] STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), Vol. II: Probability Theory 583-602. Univ. California Press, Berkeley, CA. · Zbl 0278.60026 [49] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series 7. IMS, Hayward, CA. · Zbl 0721.60016 [50] YUAN, D.-M.,WEI, L.-R. and LEI, L. (2014). Conditional central limit theorems for a sequence of conditional independent random variables. J. Korean Math. Soc. 51 1-15 · Zbl 1283.60041 · doi:10.4134/JKMS.2014.51.1.001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.