Ayyer, Arvind; Sinha, Shubham The size of \(t\)-cores and hook lengths of random cells in random partitions. (English) Zbl 1515.60037 Ann. Appl. Probab. 33, No. 1, 85-106 (2023). Summary: Fix \(t\geq 2\). We first give an asymptotic formula for certain sums of the number of \(t\)-cores. We then use this result to compute the distribution of the size of the \(t\)-core of a uniformly random partition of an integer \(n\). We show that this converges weakly to a gamma distribution after dividing by \(\sqrt{n}\). As a consequence, we find that the size of the \(t\)-core is of the order of \(\sqrt{n}\) in expectation. We then apply this result to show that the probability that \(t\) divides the hook length of a uniformly random cell in a uniformly random partition equals \(1/t\) in the limit. Finally, we extend this result to all modulo classes of \(t\) using abacus representations for cores and quotients. Cited in 1 ReviewCited in 2 Documents MSC: 60C05 Combinatorial probability 05A15 Exact enumeration problems, generating functions 05A17 Combinatorial aspects of partitions of integers 05E10 Combinatorial aspects of representation theory 11P82 Analytic theory of partitions Keywords:abacus; gamma distribution; hook length; \(t\)-core; \(t\)-quotient; uniformly random cell; uniformly random partition Software:SageMath × Cite Format Result Cite Review PDF Full Text: DOI References: [1] ANDERSON, J. (2008). An asymptotic formula for the \(t\)-core partition function and a conjecture of Stanton. J. Number Theory 128 2591-2615. · Zbl 1210.11109 · doi:10.1016/j.jnt.2007.10.006 [2] ANDREWS, G. E. (1976). The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Addison-Wesley Co., Reading, MA-London-Amsterdam. · Zbl 0371.10001 [3] APOSTOL, T. M. (1976). Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York. · Zbl 0335.10001 [4] AYYER, A. and LINUSSON, S. (2017). Correlations in the multispecies TASEP and a conjecture by Lam. Trans. Amer. Math. Soc. 369 1097-1125. · Zbl 1350.05002 · doi:10.1090/tran/6806 [5] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley Series in Probability and Mathematical Statistics. Wiley, New York. · Zbl 0822.60002 [6] THE SAGE DEVELOPERS (2017). SageMath, the Sage Mathematics Software System (Version 7.6) https://www.sagemath.org. [7] GARVAN, F., KIM, D. and STANTON, D. (1990). Cranks and \(t\)-cores. Invent. Math. 101 1-17. · Zbl 0721.11039 · doi:10.1007/BF01231493 [8] GRANVILLE, A. and ONO, K. (1996). Defect zero \(p\)-blocks for finite simple groups. Trans. Amer. Math. Soc. 348 331-347. · Zbl 0855.20007 · doi:10.1090/S0002-9947-96-01481-X [9] James, G. and Kerber, A. (1981). The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading, MA. · Zbl 0491.20010 [10] KLYACHKO, A. A. (1982). Modular forms and representations of symmetric groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 74-85, 162. · Zbl 0512.10019 [11] LAM, T. (2015). The shape of a random affine Weyl group element and random core partitions. Ann. Probab. 43 1643-1662. · Zbl 1320.60028 · doi:10.1214/14-AOP915 [12] LOEHR, N. A. (2011). Bijective Combinatorics. Discrete Mathematics and Its Applications (Boca Raton). CRC Press, Boca Raton, FL. · Zbl 1234.05001 [13] LULOV, N. and PITTEL, B. (1999). On the random Young diagrams and their cores. J. Combin. Theory Ser. A 86 245-280. · Zbl 0929.05088 · doi:10.1006/jcta.1998.2939 [14] OLSSON, J. B. (1993). Combinatorics and Representations of Finite Groups. Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen] 20. Universität Essen, Fachbereich Mathematik, Essen. · Zbl 0796.05095 [15] ROSTAM, S. (2021). Core size of a random partition for the Plancherel measure. Available at arXiv:2111.05970. [16] VINOGRADOV, A. I. and SKRIGANOV, M. M. (1979). The number of lattice points inside the sphere with variable center. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 91 25-30, 180 · Zbl 0436.10013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.