Lewis, Andrew D. Integrable and absolutely continuous vector-valued functions. (English) Zbl 1516.28006 Rocky Mt. J. Math. 52, No. 3, 925-947 (2022). Let \(\left( X,\mathcal{A},\mu \right) \) be a complete \(\sigma \)-finite measure space and \(\left( V,\mathcal{O}\right) \) be a Hausdorff locally convex topological \(F\)-vector space, \(F\in \left\{ \mathbb{R},\mathbb{C} \right\} \). In the paper the author develop a theory of integrability of functions \(f:X\rightarrow V\). The approach follows similar lines as in the case of the Banach spaces for the Bochner and Pettis integrals. Reviewer: Dumitrŭ Popa (Constanţa) Cited in 2 Documents MSC: 28B05 Vector-valued set functions, measures and integrals 46A32 Spaces of linear operators; topological tensor products; approximation properties Keywords:locally convex spaces; integration; differentiation × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] R. Beckmann and A. Deitmar, “Strong vector valued integrals”, preprint, 2011. [2] C. Blondia, “Integration in locally convex spaces”, Simon Stevin 55:3 (1981), 81-102. · Zbl 0473.46031 [3] S. Bochner, “Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind”, Fund. Math. 20 (1933), 262-276. · JFM 59.0271.01 · doi:10.4064/fm-20-1-262-176 [4] N. D. Chakraborty and S. J. Ali, “On strongly Pettis integrable functions in locally convex spaces”, Rev. Mat. Univ. Complut. Madrid 6:2 (1993), 241-262. · Zbl 0815.28006 · doi:10.5209/rev_REMA.1993.v6.n2.17818 [5] D. L. Cohn, Measure theory, 2nd ed., Birkhäuser, Base;, 2013. · Zbl 1292.28002 · doi:10.1007/978-1-4614-6956-8 [6] H. G. Garnir, M. De Wilde, and J. Schmets, Analyse fonctionnelle, tome II: Measure et intégration dans l’espace euclidien \[E_n \], Lehrbücher und Monographien aus dem Gebeite der Exakten Wissenschaften, Mathematische Reihe 37, Birkhäuser, Basel, 1972. · Zbl 0227.28002 [7] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981. · Zbl 0466.46001 [8] G. Köthe, Topological vector spaces, II, Grundl. Math. Wissen. 237, Springer, Berlin, 1979. · Zbl 0417.46001 [9] V. Marraffa, “Riemann type integrals for functions taking values in a locally convex space”, Czechoslovak Math. J. 56:2 (2006), 475-490. · Zbl 1164.28304 · doi:10.1007/s10587-006-0030-8 [10] B. J. Pettis, “On integration in vector spaces”, Trans. Amer. Math. Soc. 44:2 (1938), 277-304. · Zbl 0019.41603 · doi:10.2307/1989973 [11] M. A. Robdera, “A unified approach to integration theory”, Int. J. Appl. Phys. 9:1 (2019), 21-28. · doi:10.17706/ijapm.2019.9.1.21-28 [12] M. A. Robdera and D. N. Kagiso, “Fundamental theorem of calculus in topological vector spaces”, J. Math. Ext. 11:2 (2017), 93-110. · Zbl 1403.28013 [13] H. H. Schaefer and M. P. Wolff, Topological vector spaces, 2nd ed., Graduate Texts in Mathematics 3, Springer, New York, 1999. · Zbl 0983.46002 [14] G. E. F. Thomas, “Integration of functions with values in locally convex Suslin spaces”, Trans. Amer. Math. Soc. 212 (1975), 61-81. · Zbl 0312.28014 · doi:10.2307/1998613 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.